Image Reconstruction for Rotating Modulation Collimators using Non-Local Means

Author(s):  
Sohyeon Park ◽  
Gyemin Lee
2020 ◽  
Vol 14 (1) ◽  
Author(s):  
Phaneendra K. Yalavarthy ◽  
Sandeep Kumar Kalva ◽  
Manojit Pramanik ◽  
Jaya Prakash

Tomography ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 158-174
Author(s):  
Xue Ren ◽  
Ji Eun Jung ◽  
Wen Zhu ◽  
Soo-Jin Lee

In this paper, we present a new regularized image reconstruction method for positron emission tomography (PET), where an adaptive weighted median regularizer is used in the context of a penalized-likelihood framework. The motivation of our work is to overcome the limitation of the conventional median regularizer, which has proven useful for tomographic reconstruction but suffers from the negative effect of removing fine details in the underlying image when the edges occupy less than half of the window elements. The crux of our method is inspired by the well-known non-local means denoising approach, which exploits the measure of similarity between the image patches for weighted smoothing. However, our method is different from the non-local means denoising approach in that the similarity measure between the patches is used for the median weights rather than for the smoothing weights. As the median weights, in this case, are spatially variant, they provide adaptive median regularization achieving high-quality reconstructions. The experimental results indicate that our similarity-driven median regularization method not only improves the reconstruction accuracy, but also has great potential for super-resolution reconstruction for PET.


2016 ◽  
Vol 32 (9) ◽  
pp. 1041-1051 ◽  
Author(s):  
Hongliang Qi ◽  
Zijia Chen ◽  
Shuyu Wu ◽  
Yuan Xu ◽  
Linghong Zhou

Author(s):  
Seong-Hyeon Kang ◽  
Ji-Youn Kim

The purpose of this study is to evaluate the various control parameters of a modeled fast non-local means (FNLM) noise reduction algorithm which can separate color channels in light microscopy (LM) images. To achieve this objective, the tendency of image characteristics with changes in parameters, such as smoothing factors and kernel and search window sizes for the FNLM algorithm, was analyzed. To quantitatively assess image characteristics, the coefficient of variation (COV), blind/referenceless image spatial quality evaluator (BRISQUE), and natural image quality evaluator (NIQE) were employed. When high smoothing factors and large search window sizes were applied, excellent COV and unsatisfactory BRISQUE and NIQE results were obtained. In addition, all three evaluation parameters improved as the kernel size increased. However, the kernel and search window sizes of the FNLM algorithm were shown to be dependent on the image processing time (time resolution). In conclusion, this work has demonstrated that the FNLM algorithm can effectively reduce noise in LM images, and parameter optimization is important to achieve the algorithm’s appropriate application.


Sign in / Sign up

Export Citation Format

Share Document