scholarly journals DETECÇÃO DE ANIMAIS BOVINOS UTILIZANDO IMAGENS AÉREAS POR MEIO DE REDES NEURAIS

2021 ◽  
Vol 13 (2) ◽  
pp. 47-56
Author(s):  
Wellington Hiroshi Takano ◽  
Leandro Luiz de Almeida ◽  
Francisco Assis da Silva

Nowadays, with the evolution of technology, many areas that cover agriculture are making use of professional drones that have several tools that help in monitoring. With the advancement of Neural Networks, several researchers are choosing to use neural networks to detect objects. As the counting of bovine animals requires time and physical effort, in addition to being risky in certain situations, with the use of aerial images and neural networks, this activity becomes more viable and with less time spent. In this work, the focus is on detecting bovine animals using two neural networks, with aerial images captured from a drone.

IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Saleh Javadi ◽  
Mattias Dahl ◽  
Mats I. Pettersson

Author(s):  
Gerardo Schneider ◽  
Alejandro Javier Hadad ◽  
Alejandra Kemerer

Resumen En este trabajo se presenta una implementación de software para la determinación del estado de plantaciones de caña de azúcar basado en el análisis de imágenes aéreas multiespectrales. En la actualidad no existen técnicas precisas para estimar objetivamente la superficie de caña caída o volcada, y esta ocasiona importantes pérdidas de productividad en la cosecha y en la industrialización. Para la realización de éste trabajo se confeccionó un dataset referencial de imágenes, y se implementó un software a partir del cual se obtuvieron indicadores propuestos como representativos del fenómeno agronómico, y se realizaron análisis de los datos generados. Además se implementó un software clasificador referencial basado en redes neuronales con el que se estimó la fortaleza de dichos indicadores y se estimó la superficie afectada en forma cuantitativa y espacial. Palabras ClavesCaña de azúcar, cuantificación, volcado, red neuronal, procesamiento de imagen   Abstract In this paper we present a software implementation for determining the status of sugarcane plantations based on the analysis of multispectral aerial images. Currently there are no precise techniques to estimate objectively the cane area fall or overturned, and this causes significant losses in crop productivity and industrialization. For the realization of this work a dataset benchmark images was made, and a software, from which were obtained representative proposed indicators for the agronomic phenomenon was implemented, and analyzes of the data generated were realized. In addition, we implemented a software benchmark classifier based on neural networks with which we estimated the strength of these indicators and the area affected was estimated quantitatively and spatially. Keywords Sugarcane, quantification, fall, neural network, image processing


2018 ◽  
Vol 15 (2) ◽  
pp. 173-177 ◽  
Author(s):  
Kaiqiang Chen ◽  
Kun Fu ◽  
Menglong Yan ◽  
Xin Gao ◽  
Xian Sun ◽  
...  

2004 ◽  
Vol 47 (5) ◽  
pp. 1813-1819 ◽  
Author(s):  
D. Ashish ◽  
G. Hoogenboom ◽  
R. W. McClendon

Sign in / Sign up

Export Citation Format

Share Document