land use classification
Recently Published Documents


TOTAL DOCUMENTS

479
(FIVE YEARS 152)

H-INDEX

33
(FIVE YEARS 6)

2022 ◽  
pp. 97-104
Author(s):  
Hassan Khavarian Nehzak ◽  
Maryam Aghaei ◽  
Raoof Mostafazadeh ◽  
Hamidreza Rabiei-Dastjerdi

2021 ◽  
Vol 1 (2) ◽  
Author(s):  
Ngoc Quy BUI ◽  
Dinh Hien LE ◽  
Anh Quan DUONG ◽  
Quoc Long NGUYEN

LiDAR technology has been widely adopted as a proper method for land cover classification.Recently with the development of technology, LiDAR systems can now capture high-resolutionmultispectral bands images with high-density LiDAR point cloud simultaneously. Therefore, it opens newopportunities for more precise automatic land-use classification methods by utilizing LiDAR data. Thisarticle introduces a combining technique of point cloud classification algorithms. The algorithms includeground detection, building detection, and close point classification - the classification is based on pointclouds’ attributes. The main attributes are heigh, intensity, and NDVI index calculated from 4 bands ofcolors extracted from multispectral images for each point. Data of the Leica City Mapper LiDAR systemin an area of 80 ha in Quang Xuong town, Thanh Hoa province, Vietnam was used to deploy theclassification. The data is classified into eight different types of land use consist of asphalt road, otherground, low vegetation, medium vegetation, high vegetation, building, water, and other objects. Theclassification workflow was implemented in the TerraSolid suite, with the result of the automation processcame out with 97% overall accuracy of classification points. The


2021 ◽  
Vol 16 (7) ◽  
pp. 1253-1261
Author(s):  
Devianti ◽  
Fachruddin ◽  
Eva Purwati ◽  
Dewi Sartika Thamren ◽  
Agustami Sitorus

Land management in the Krueng Jreu sub-watershed (Aceh Province, Indonesia) that did not follow soil and water conservation methods encouraged erosion. This can lead to silting of rivers or irrigation canals due to sediment deposition. Limited tools were the main reason for the infrequent measurement and mapping of these sediments in watersheds. Therefore, this study aims to conduct sedimentary mapping using GIS techniques combined with the sediment routing method to successfully produce a map of sediment assessment criteria for the Krueng Jreu sub-watershed area from 2010 to 2019. Rainfall and spatial data from the Krueng Jreu sub-watershed were analyzed to obtain several parameters of surface runoff, peak discharge, erodibility, slope, the value of ground cover, and land management. The results show that the Krueng Jreu sub-watershed was included in the wet climate type. The type of land use classification of savanna accounted for the most significant runoff, and land use type of open soil gave the smallest runoff. The maximum erosion found in the secondary dryland forest type land classification. It was known that the type of secondary dryland forest land use was the most significant contributor to sediment occurrence in the Krueng Jreu sub-watershed area.


2021 ◽  
pp. 133-139
Author(s):  
Fengna Liang ◽  
Xiufang Zhang ◽  
Hui Li ◽  
Hua Yu ◽  
Qiuyan Lin ◽  
...  

2021 ◽  
Vol 5 (2) ◽  
pp. 170
Author(s):  
Adnan Adnan ◽  
Fitra Saleh ◽  
Iradat Salihin

Abstrak: Penggunaan lahan disetiap tahunnya akan mengalami perubahan. Perkembangan tersebut bisa jadi tidak terkendali, sehingga perencanaan prediksi perubahan lahan penting untuk dikaji. Dalam memprediksi dapat dilakukan dengan menggunakan citra, khususnya citra Landsat. Penelitian ini bertujuan untuk: (1) distribusi penggunaan lahan terbangun di Kota Kendari pada tahun 2014 dan 2019 dengan metode OBIA pada citra terfusi; (2) melihat arah perubahan penggunaan lahan terbangun di Kota Kendari pada tahun 2024 dan 2029 dengan metode Land Change Modeler (LCM). Metode yang digunakan dalam penelitian ini  yaitu metode klasifikasi penggunaan lahan berbasis piksel OBIA dan pemodelan prediksi perubahan penggunaan lahan Land Change Modeler (LCM). Hasil penelitian ini antara lain: (1) luas lahan terbangun pada tahun 2014 di Kota Kendari seluas 6.061,85 hektar dan luas penggunaan lahan terbangun di Kota Kendari pada tahun 2019 seluas 6.716,96 hektar dengan perubahan penggunaan lahan terbangun tahun 2014 sampai dengan tahun 2019 dengan pertambahan luas 2,43%; (2) Arah perubahan penggunaan lahan terbangun di Kota Kendari diprediksikan cenderung berkembang ke arah Kecamatan Baruga karena dipengaruhi oleh dua faktor yaitu kemiringan lereng dan jaringan jalan. Kata Kunci : Penggunaan Lahan, Landsat 8 OLI, Penajaman Citra, OBIA, LCM Abstract: Land use will change every year. The development may be uncontrollable, so predictive planning of land changes is important to review. In predicting  can be done using  imagery, especially Landsat imagery. This study aims to:(1)  the distribution of land  use  built  in Kendari City in 2014 and 2019 with OBIA method on diffusion imagery; (2) see the direction of land use changes built in Kendari City in  2024 and 2029 with land change modeler  (LCM) method. The methods used in this study are OBIA pixel-based land  use  classification method and land use change prediction modeling land change modeler (LCM).  The results of this study include: (1) land area  built in 2014 in Kendari City aswide as 6,061.85 hectars and land use area built in Kendari City in 2019 aswide as 6,716.96 hectars with land use changes built in 2014 to 2019 with an increase  of  2.43%; (2) The direction of land use changes built in Kendari City  is predicted   to tend to  develop  towards  Baruga Subdistrict because it is influenced by two factors, namely slope and road network. Keywords: Land Use,  Landsat 8 OLI,  Image Sharpening,  OBIA, LCM


2021 ◽  
Vol 13 (21) ◽  
pp. 4276
Author(s):  
Yuxin Sun ◽  
Yong Xue ◽  
Xingxing Jiang ◽  
Chunlin Jin ◽  
Shuhui Wu ◽  
...  

The purpose of this study is to estimate the particulate matter (PM2.5 and PM10) in China using the improved geographically and temporally weighted regression (IGTWR) model and Fengyun (FY-4A) aerosol optical depth (AOD) data. Based on the IGTWR model, the boundary layer height (BLH), relative humidity (RH), AOD, time, space, and normalized difference vegetation index (NDVI) data are employed to estimate the PM2.5 and PM10. The main processes of this study are as follows: firstly, the feasibility of the AOD data from FY-4A in estimating PM2.5 and PM10 mass concentrations were analysed and confirmed by randomly selecting 5–6 and 9–10 June 2020 as an example. Secondly, hourly concentrations of PM2.5 and PM10 are estimated between 00:00 and 09:00 (UTC) each day. Specifically, the model estimates that the correlation coefficient R2 of PM2.5 is 0.909 and the root mean squared error (RMSE) is 5.802 μg/m3, while the estimated R2 of PM10 is 0.915, and the RMSE is 12.939 μg/m3. Our high temporal resolution results reveal the spatial and temporal characteristics of hourly PM2.5 and PM10 concentrations on the day. The results indicate that the use of data from the FY-4A satellite and an improved time–geographically weighted regression model for estimating PM2.5 and PM10 is feasible, and replacing land use classification data with NDVI facilitates model improvement.


Sign in / Sign up

Export Citation Format

Share Document