scholarly journals An Efficient Solving the Travelling Salesman Problem : Global Optimization of Neural Networks by Using Hybrid Method

Author(s):  
Yong-hyun Cho
2019 ◽  
Vol 8 (2) ◽  
pp. 5066-5072

This paper proposes a Genetic approach using Hybrid Crossover for Solving the Travelling Salesman Problem. Proposed hybrid method generates an initial population using Nearest Neighbor (NN) approach which is modified using “Sub-Path Mutation” (SPM) process. Modified population undergoes Distance Preserving Crossover (DPX) [2] and 2-opt Optimal mutation (2-opt) [1] to check for possible refinement. SPM searches position for the minimum distant city within a given path. This work is motivated by the algorithm developed by [3] who performed DPX and 2-opt mutation on the initial population generated using NN. For performance comparison, standard TSPLIB data is taken. The proposed hybrid method performances better in terms of % best error. It performs better than methods reported in [3 - 11].


2020 ◽  
Vol 28 (1) ◽  
pp. 45-57 ◽  
Author(s):  
Miguel Cárdenas-Montes

Abstract The travelling salesman problem is one of the most popular problems in combinatorial optimization. It has been frequently used as a benchmark of the performance of evolutionary algorithms. For this reason, nowadays practitioners request new and more difficult instances of this problem. This leads to investigate how to evaluate the intrinsic difficulty of the instances and how to separate ease and difficult instances. By developing methodologies for separating easy- from difficult-to-solve instances, researchers can fairly test the performance of their combinatorial optimizers. In this work, a methodology for evaluating the difficulty of instances of the travelling salesman problem near the optimal solution is proposed. The question is if the fitness landscape near the optimal solution encodes enough information to separate instances in function of their intrinsic difficulty. This methodology is based on the use of a random walk to explore the closeness of the optimal solution. The optimal solution is modified by altering one connection between two cities at each step, at the same time that the fitness of the altered solution is evaluated. This permits evaluating the slope of the fitness landscape. Later, and using the previous information, the difficulty of the instance is evaluated with random forests and artificial neural networks. In this work, this methodology is confronted with a wide set of instances. As a consequence, a methodology to separate the instances of the travelling salesman problem by their degree of difficulty is proposed and evaluated.


Sign in / Sign up

Export Citation Format

Share Document