Numerical study on the pressure drop and heat transfer enhancement in a flat-plate solar collector

2013 ◽  
Vol 37 (4) ◽  
pp. 316-323
Author(s):  
Joo-Nyoung Heo ◽  
Jee-Young Shin ◽  
Dooho Lee ◽  
Young-Seok Son
Author(s):  
Tariq Amin Khan ◽  
Wei Li ◽  
Zhengjiang Zhang ◽  
Jincai Du ◽  
Sadiq Amin Khan ◽  
...  

Heat transfer is a naturally occurring phenomenon which can be greatly enhanced by introducing longitudinal vortex generators (VGs). As the longitudinal vortices can potentially enhance heat transfer with small pressure loss penalty, VGs are widely used to enhance the heat transfer of flat-plate type heat exchangers. However, there are few researches which deal with its thermal optimization. Three dimensional numerical simulations are performed to study the effect of angle of attack and attach angle (angle between VG and wall) of vortex generator on the fluid flow and heat transfer characteristics of a flat-plate channel. The flow is assumed as steady state, incompressible and laminar within the range of studied Reynolds numbers (Re = 380, 760, 1140). In the present work, the average and local Nusselt number and pressure drop are investigated for Rectangular vortex generator (RVG) with varying angle of attack and attach angle. The numerical results indicate that the heat transfer and pressure drop increases with increasing the angle of attack to a certain range and then decreases with increasing angle of attack. Moreover, the attach angle also plays an importance role; a 90° attach angle is not necessary for enhancing the heat transfer. Usually, heat transfer enhancement is achieved at the expense of pressure drop penalty. To find the optimal position of vortex generator to obtain maximum heat transfer and minimum pressure drop, the data obtained from numerical simulations are used to train a BRANN (Bayesian-regularized artificial neural network). This in turn is used to drive multi-objective genetic algorithm (MOGA) to find the optimal parameters of VGs in the form of Pareto front. The optimal values of these parameters are finally presented.


2002 ◽  
Vol 124 (6) ◽  
pp. 1158-1168 ◽  
Author(s):  
M. C. Gentry ◽  
A. M. Jacobi

Using delta wings placed at the leading edge of a flat plate, streamwise vortices are generated that modify the flow; the same wings are also used to modify a developing channel flow. Local and average measurements of convection coefficients are obtained using naphthalene sublimation, and the structure of the vortices is studied using flow visualization and vortex strength measurements. The pressure drop penalty associated with the heat transfer enhancement of the channel flow is also investigated. In regions where a vortex induces a surface-normal inflow, the local heat transfer coefficients are found to increase by as much as 300 percent over the baseline flow, depending on vortex strength and location relative to the boundary layer. Vortex strength increases with Reynolds number, wing aspect ratio, and wing attack angle, and the vortex strength decays as the vortex is carried downstream. Considering the complete channel surface, the largest spatially averaged heat average heat transfer enhancement is 55 percent; it is accompanied by a 100 percent increase in the pressure drop relative to the same channel flow with no delta-wing vortex generator.


2005 ◽  
Vol 2005.15 (0) ◽  
pp. 541-544
Author(s):  
Himsar AMBARITA ◽  
Kouki KISHINAMI ◽  
Kazuhiko SATO ◽  
Masasi DAIMARUYA ◽  
Hiromu SUGIYAMA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document