On $\mathcal{M}$-normal embedded subgroups and the structure of finite groups

2021 ◽  
Vol 127 (2) ◽  
pp. 243-251
Author(s):  
Ruifang Chen ◽  
Xianhe Zhao ◽  
Rui Li

Let $G$ be a group and $H$ be a subgroup of $G$. $H$ is said to be $\mathcal{M}$-normal supplemented in $G$ if there exists a normal subgroup $K$ of $G$ such that $G=HK$ and $H_1K<G$ for every maximal subgroup $H_1$ of $H$. Furthermore, $H$ is said to be $\mathcal{M}$-normal embedded in $G$ if there exists a normal subgroup $K$ of $G$ such that $G=HK$ and $H\cap K=1$ or $H\cap K$ is $\mathcal{M}$-normal supplemented in $G$. In this paper, some new criteria for a group to be nilpotent and $p$-supersolvable for some prime $p$ are obtained.

2019 ◽  
Vol 69 (4) ◽  
pp. 763-772
Author(s):  
Chenchen Cao ◽  
Venus Amjid ◽  
Chi Zhang

Abstract Let σ = {σi ∣i ∈ I} be some partition of the set of all primes ℙ, G be a finite group and σ(G) = {σi∣σi ∩ π(G) ≠ ∅}. G is said to be σ-primary if ∣σ(G)∣ ≤ 1. A subgroup H of G is said to be σ-subnormal in G if there exists a subgroup chain H = H0 ≤ H1 ≤ … ≤ Ht = G such that either Hi−1 is normal in Hi or Hi/(Hi−1)Hi is σ-primary for all i = 1, …, t. A set 𝓗 of subgroups of G is said to be a complete Hall σ-set of G if every non-identity member of 𝓗 is a Hall σi-subgroup of G for some i and 𝓗 contains exactly one Hall σi-subgroup of G for every σi ∈ σ(G). Let 𝓗 be a complete Hall σ-set of G. A subgroup H of G is said to be 𝓗-permutable if HA = AH for all A ∈ 𝓗. We say that a subgroup H of G is weakly 𝓗-permutable in G if there exists a σ-subnormal subgroup T of G such that G = HT and H ∩ T ≤ H𝓗, where H𝓗 is the subgroup of H generated by all those subgroups of H which are 𝓗-permutable. By using the weakly 𝓗-permutable subgroups, we establish some new criteria for a group G to be σ-soluble and supersoluble, and we also give the conditions under which a normal subgroup of G is hypercyclically embedded.


2011 ◽  
Vol 53 (2) ◽  
pp. 401-410 ◽  
Author(s):  
LONG MIAO

AbstractA subgroup H is called weakly -supplemented in a finite group G if there exists a subgroup B of G provided that (1) G = HB, and (2) if H1/HG is a maximal subgroup of H/HG, then H1B = BH1 < G, where HG is the largest normal subgroup of G contained in H. In this paper we will prove the following: Let G be a finite group and P be a Sylow p-subgroup of G, where p is the smallest prime divisor of |G|. Suppose that P has a non-trivial proper subgroup D such that all subgroups E of P with order |D| and 2|D| (if P is a non-abelian 2-group, |P : D| > 2 and there exists D1 ⊴ E ≤ P with 2|D1| = |D| and E/D1 is cyclic of order 4) have p-nilpotent supplement or weak -supplement in G, then G is p-nilpotent.


2012 ◽  
Vol 49 (3) ◽  
pp. 390-405
Author(s):  
Wenbin Guo ◽  
Alexander Skiba

Let G be a finite group and H a subgroup of G. H is said to be S-quasinormal in G if HP = PH for all Sylow subgroups P of G. Let HsG be the subgroup of H generated by all those subgroups of H which are S-quasinormal in G and HsG the intersection of all S-quasinormal subgroups of G containing H. The symbol |G|p denotes the order of a Sylow p-subgroup of G. We prove the followingTheorem A. Let G be a finite group and p a prime dividing |G|. Then G is p-supersoluble if and only if for every cyclic subgroup H ofḠ (G) of prime order or order 4 (if p = 2), Ḡhas a normal subgroup T such thatHsḠandH∩T=HsḠ∩T.Theorem B. A soluble finite group G is p-supersoluble if and only if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T with cyclic Sylow p-subgroups such that EsG = ET and |E ∩ T|p = |EsG ∩ T|p.Theorem C. A finite group G is p-soluble if for every 2-maximal subgroup E of G such that Op′ (G) ≦ E and |G: E| is not a power of p, G has an S-quasinormal subgroup T such that EsG = ET and |E ∩ Tp = |EsG ∩ T|p.


1970 ◽  
Vol 3 (2) ◽  
pp. 273-276
Author(s):  
John Randolph

Let G be a finite group with a nilpotent maximal subgroup S and let P denote the 2-Sylow subgroup of S. It is shown that if P ∩ Q is a normal subgroup of P for any 2-Sylow subgroup Q of G, then G is solvable.


1998 ◽  
Vol 40 (2) ◽  
pp. 187-197
Author(s):  
A. Ballester-Bolinches ◽  
H. Bechtell ◽  
L. M. Ezquerro

All groups considered in the sequel are finite. Let (ℭ and denote the formations of groups which consist of collections of groups that respectively either split over each normal subgroup (nC-groups) or for which the groups do not possess nontrivial Frattini chief factors [8]. The purpose of this article is to develop and expand a concept that arises naturally with the residuals for these formations, namely each G-chief factor is non-complemented (Frattini). With respect to a solid set X of maximal subgroups, these properties are generalized respectively to so-called X-parafrattini (X-profrattini) normal subgroups for which each type is closed relative to products. The relationships among the unique maximal normal subgroups that result from these products, the solid set of maximal subgroups X, X-prefrattini subgroups, and the residuals of formations are explored. This leads to a well-defined collected of formations, the partially nonsaturated formations, with properties analogous to those which are totally non-saturated. In the development, attention is given to a set of maximal subgroups which is the image of a solid function defined on all groups, a weaker condition than that of a solid set. A result of particular interest answers affirmatively the long-standing conjecture that a non-trivial nC-group G is solvable if and only if each G-chief factor is complemented by a maximal subgroup. This will force a critical re-examination of the classification problem for nC-groups. Since the article continues the investigations on finite groups initiated in [2], a familiarity with that article is assumed. All other notation and terminology is from [6]. If M is a maximal subgroup of a group G and G/C or e G(M) is a monolithic primitive group, i.e. a group with a unique minimal normal subgroup, then M is called a monolithic maximal subgroupof G.


2014 ◽  
Vol 57 (3) ◽  
pp. 648-657 ◽  
Author(s):  
Juping Tang ◽  
Long Miao

AbstractLet G be a finite group and let ℱ be a class of groups. Then Zℱϕ(G) is the ℱϕ-hypercentre of G, which is the product of all normal subgroups of G whose non-Frattini G-chief factors are ℱ-central in G. A subgroup H is called ℳ-supplemented in a finite group G if there exists a subgroup B of G such that G = HB and H1B is a proper subgroup of G for any maximal subgroup H1 of H. The main purpose of this paper is to prove the following: Let E be a normal subgroup of a group G. Suppose that every noncyclic Sylow subgroup P of F*(E) has a subgroup D such that 1 < |D| < |P| and every subgroup H of P with order |H| = |D| is 𝓜-supplemented in G, then E ≤ Zuϕ(G).


1971 ◽  
Vol 23 (3) ◽  
pp. 550-552
Author(s):  
John W. Randolph

Throughout this paper G will denote a finite group containing a nilpotent maximal subgroup S and P will denote the Sylow 2-subgroup of S. The largest subgroup of S normal in G will be designated by core (S) and the largest solvable normal subgroup of G by rad(G). All other notation is standard.Thompson [6] has shown that if P = 1 then G is solvable. Janko [3] then observed that G is solvable if P is abelian, a condition subsequently weakened by him [4] to the assumption that the class of P is ≦ 2 . Our purpose is to demonstrate the sufficiency of a still weaker assumption about P.


2018 ◽  
Vol 25 (4) ◽  
pp. 481-493
Author(s):  
Xinjian Zhang ◽  
Long Miao ◽  
Jia Zhang
Keyword(s):  

1969 ◽  
Vol 10 (3-4) ◽  
pp. 359-362
Author(s):  
Nita Bryce

M. Suzuki [3] has proved the following theorem. Let G be a finite group which has an involution t such that C = CG(t) ≅ SL(2, q) and q odd. Then G has an abelian odd order normal subgroup A such that G = CA and C ∩ A = 〈1〉.


1990 ◽  
Vol 13 (2) ◽  
pp. 311-314
Author(s):  
S. Srinivasan

In finite groups maximal subgroups play a very important role. Results in the literature show that if the maximal subgroup has a very small index in the whole group then it influences the structure of the group itself. In this paper we study the case when the index of the maximal subgroups of the groups have a special type of relation with the Fitting subgroup of the group.


Sign in / Sign up

Export Citation Format

Share Document