scholarly journals A note on the Diophantine equation $|a^x-b^y|=c$

2010 ◽  
Vol 107 (2) ◽  
pp. 161
Author(s):  
Bo He ◽  
Alain Togbé ◽  
Shichun Yang

Let $a,b,$ and $c$ be positive integers. We show that if $(a,b) =(N^k-1,N)$, where $N,k\geq 2$, then there is at most one positive integer solution $(x,y)$ to the exponential Diophantine equation $|a^x-b^y|=c$, unless $(N,k)=(2,2)$. Combining this with results of Bennett [3] and the first author [6], we stated all cases for which the equation $|(N^k \pm 1)^x - N^y|=c$ has more than one positive integer solutions $(x,y)$.

2014 ◽  
Vol 90 (1) ◽  
pp. 9-19 ◽  
Author(s):  
TAKAFUMI MIYAZAKI ◽  
NOBUHIRO TERAI

AbstractLet $m$, $a$, $c$ be positive integers with $a\equiv 3, 5~({\rm mod} \hspace{0.334em} 8)$. We show that when $1+ c= {a}^{2} $, the exponential Diophantine equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(c{m}^{2} - 1)}\nolimits ^{y} = \mathop{(am)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$ under the condition $m\equiv \pm 1~({\rm mod} \hspace{0.334em} a)$, except for the case $(m, a, c)= (1, 3, 8)$, where there are only two solutions: $(x, y, z)= (1, 1, 2), ~(5, 2, 4). $ In particular, when $a= 3$, the equation $\mathop{({m}^{2} + 1)}\nolimits ^{x} + \mathop{(8{m}^{2} - 1)}\nolimits ^{y} = \mathop{(3m)}\nolimits ^{z} $ has only the positive integer solution $(x, y, z)= (1, 1, 2)$, except if $m= 1$. The proof is based on elementary methods and Baker’s method.


2015 ◽  
Vol 11 (04) ◽  
pp. 1107-1114 ◽  
Author(s):  
Hai Yang ◽  
Ruiqin Fu

Let D1, D2, D, k, λ be fixed integers such that D1 ≥ 1, D2 ≥ 1, gcd (D1, D2) = 1, D = D1D2 is not a square, ∣k∣ > 1, gcd (D, k) = 1 and λ = 1 or 4 according as 2 ∤ k or not. In this paper, we prove that every solution class S(l) of the equation D1x2-D2y2 = λkz, gcd (x, y) = 1, z > 0, has a unique positive integer solution [Formula: see text] satisfying [Formula: see text] and [Formula: see text], where z runs over all integer solutions (x,y,z) of S(l),(u1,v1) is the fundamental solution of Pell's equation u2 - Dv2 = 1. This result corrects and improves some previous results given by M. H. Le.


2020 ◽  
Vol 57 (2) ◽  
pp. 200-206
Author(s):  
Elif kizildere ◽  
Maohua le ◽  
Gökhan Soydan

AbstractLet l,m,r be fixed positive integers such that 2| l, 3lm, l > r and 3 | r. In this paper, using the BHV theorem on the existence of primitive divisors of Lehmer numbers, we prove that if min{rlm2 − 1,(l − r)lm2 + 1} > 30, then the equation (rlm2 − 1)x + ((l − r)lm2 + 1)y = (lm)z has only the positive integer solution (x,y,z) = (1,1,2).


2020 ◽  
Vol 16 (08) ◽  
pp. 1701-1708
Author(s):  
Xiao-Hui Yan

For fixed coprime positive integers [Formula: see text], [Formula: see text], [Formula: see text] with [Formula: see text] and [Formula: see text], there is a conjecture that the exponential Diophantine equation [Formula: see text] has only the positive integer solution [Formula: see text] for any positive integer [Formula: see text]. This is the analogue of Jésmanowicz conjecture. In this paper, we consider the equation [Formula: see text], where [Formula: see text] are coprime positive integers, and prove that the equation has no positive integer solution if [Formula: see text] and [Formula: see text].


2018 ◽  
Vol 14 (05) ◽  
pp. 1223-1228
Author(s):  
Hai Yang ◽  
Ruiqin Fu

Let [Formula: see text] be a positive integer which is not a square. Further, let [Formula: see text] be the least positive integer solution of the Pell equation [Formula: see text], and let [Formula: see text] denote the class number of binary quadratic primitive forms of discriminant [Formula: see text]. If [Formula: see text] satisfies [Formula: see text] and [Formula: see text], then [Formula: see text] is called an exceptional number. In this paper, under the assumption that there have no exceptional numbers, we prove that the equation [Formula: see text] has no positive integer solutions [Formula: see text] satisfy [Formula: see text] and [Formula: see text].


2020 ◽  
Vol 55 (2) ◽  
pp. 195-201
Author(s):  
Maohua Le ◽  
◽  
Gökhan Soydan ◽  

Let A, B be positive integers such that min{A,B}>1, gcd(A,B) = 1 and 2|B. In this paper, using an upper bound for solutions of ternary purely exponential Diophantine equations due to R. Scott and R. Styer, we prove that, for any positive integer n, if A >B3/8, then the equation (A2 n)x + (B2 n)y = ((A2 + B2)n)z has no positive integer solutions (x,y,z) with x > z > y; if B>A3/6, then it has no solutions (x,y,z) with y>z>x. Thus, combining the above conclusion with some existing results, we can deduce that, for any positive integer n, if B ≡ 2 (mod 4) and A >B3/8, then this equation has only the positive integer solution (x,y,z)=(1,1,1).


2014 ◽  
Vol 2014 ◽  
pp. 1-3 ◽  
Author(s):  
Yahui Yu ◽  
Xiaoxue Li

Letbandcbe fixed coprime odd positive integers withmin{b,c}>1. In this paper, a classification of all positive integer solutions(x,y,z)of the equation2x+by=czis given. Further, by an elementary approach, we prove that ifc=b+2, then the equation has only the positive integer solution(x,y,z)=(1,1,1), except for(b,x,y,z)=(89,13,1,2)and(2r-1,r+2,2,2), whereris a positive integer withr≥2.


2016 ◽  
Vol 95 (1) ◽  
pp. 5-13 ◽  
Author(s):  
MOU-JIE DENG ◽  
DONG-MING HUANG

Let $a,b,c$ be a primitive Pythagorean triple and set $a=m^{2}-n^{2},b=2mn,c=m^{2}+n^{2}$, where $m$ and $n$ are positive integers with $m>n$, $\text{gcd}(m,n)=1$ and $m\not \equiv n~(\text{mod}~2)$. In 1956, Jeśmanowicz conjectured that the only positive integer solution to the Diophantine equation $(m^{2}-n^{2})^{x}+(2mn)^{y}=(m^{2}+n^{2})^{z}$ is $(x,y,z)=(2,2,2)$. We use biquadratic character theory to investigate the case with $(m,n)\equiv (2,3)~(\text{mod}~4)$. We show that Jeśmanowicz’ conjecture is true in this case if $m+n\not \equiv 1~(\text{mod}~16)$ or $y>1$. Finally, using these results together with Laurent’s refinement of Baker’s theorem, we show that Jeśmanowicz’ conjecture is true if $(m,n)\equiv (2,3)~(\text{mod}~4)$ and $n<100$.


2021 ◽  
Vol 27 (3) ◽  
pp. 123-129
Author(s):  
Yasutsugu Fujita ◽  
◽  
Maohua Le ◽  

For any positive integer t, let ord_2 t denote the order of 2 in the factorization of t. Let a,\,b be two distinct fixed positive integers with \min\{a,b\}>1. In this paper, using some elementary number theory methods, the existence of positive integer solutions (x,n) of the polynomial-exponential Diophantine equation (*) (a^n-1)(b^n-1)=x^2 with n>2 is discussed. We prove that if \{a,b\}\ne \{13,239\} and ord_2(a^2-1)\ne ord_2(b^2-1), then (*) has no solutions (x,n) with 2\mid n. Thus it can be seen that if \{a,b\}\equiv \{3,7\},\{3,15\},\{7,11\},\{7,15\} or \{11,15\} \pmod{16}, where \{a,b\} \equiv \{a_0,b_0\} \pmod{16} means either a \equiv a_0 \pmod{16} and b \equiv b_0\pmod{16} or a\equiv b_0 \pmod{16} and b\equiv a_0 \pmod{16}, then (*) has no solutions (x,n).


2019 ◽  
Vol 15 (05) ◽  
pp. 1069-1074 ◽  
Author(s):  
Hai Yang ◽  
Ruiqin Fu

Let [Formula: see text] be a positive integer with [Formula: see text], and let [Formula: see text] be an odd prime. In this paper, by using certain properties of Pell’s equations and quartic diophantine equations with some elementary methods, we prove that the system of equations [Formula: see text] [Formula: see text] and [Formula: see text] has positive integer solutions [Formula: see text] if and only if [Formula: see text] and [Formula: see text] satisfy [Formula: see text] and [Formula: see text], where [Formula: see text], [Formula: see text] and [Formula: see text] are positive integers. Further, if the above condition is satisfied, then [Formula: see text] has only the positive integer solution [Formula: see text]. By the above result, we can obtain the following corollaries immediately. (i) If [Formula: see text] or [Formula: see text], then [Formula: see text] has no positive integer solutions [Formula: see text]. (ii) For [Formula: see text], [Formula: see text] has only the positive integer solutions [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document