scholarly journals Sharp bounds for Toader mean in terms of contraharmonic mean with applications

2013 ◽  
pp. 161-166 ◽  
Author(s):  
Yuming Chu ◽  
Miao-Kun Wang ◽  
Xiao-Yan Ma
2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Yu-Ming Chu ◽  
Shou-Wei Hou

We find the greatest valueαand the least valueβin(1/2,1)such that the double inequalityC(αa+(1-α)b,αb+(1-α)a)<T(a,b)<Cβa+1-βb,βb+(1-βa)holds for alla,b>0witha≠b. Here,T(a,b)=(a-b)/[2 arctan((a-b)/(a+b))]andCa,b=(a2+b2)/(a+b)are the Seiffert and contraharmonic means ofaandb, respectively.


2015 ◽  
Vol 2015 ◽  
pp. 1-5 ◽  
Author(s):  
Wei-Mao Qian ◽  
Ying-Qing Song ◽  
Xiao-Hui Zhang ◽  
Yu-Ming Chu
Keyword(s):  

We present the best possible parametersλ1,μ1∈Randλ2,μ2∈1/2,1such that double inequalitiesλ1C(a,b)+1-λ1A(a,b)<T(a,b)<μ1C(a,b)+1-μ1A(a,b),Cλ2a+1-λ2b,λ2b+1-λ2a<T(a,b)<Cμ2a+1-μ2b,μ2b+1-μ2ahold for alla,b>0witha≠b, whereA(a,b)=(a+b)/2,C(a,b)=a3+b3/a2+b2andT(a,b)=2∫0π/2a2cos2θ+b2sin2θdθ/πare the arithmetic, second contraharmonic, and Toader means ofaandb, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhi-Jun Guo ◽  
Yu-Ming Chu ◽  
Ying-Qing Song ◽  
Xiao-Jing Tao

We give several sharp bounds for the Neuman meansNAHandNHA(NCAandNAC) in terms of harmonic meanH(contraharmonic meanC) or the geometric convex combination of arithmetic meanAand harmonic meanH(contraharmonic meanCand arithmetic meanA) and present a new chain of inequalities for certain bivariate means.


2020 ◽  
Vol 70 (5) ◽  
pp. 1097-1112
Author(s):  
Hong-Hu Chu ◽  
Tie-Hong Zhao ◽  
Yu-Ming Chu

AbstractIn the article, we present the best possible parameters α1, β1, α2, β2 ∈ ℝ and α3, β3 ∈ [1/2, 1] such that the double inequalities$$\begin{array}{} \begin{split} \displaystyle \alpha_{1}C(a, b)+(1-\alpha_{1})A(a, b) & \lt T_{3}(a, b) \lt \beta_{1}C(a, b)+(1-\beta_{1})A(a, b), \\ \alpha_{2}C(a, b)+(1-\alpha_{2})Q(a, b) & \lt T_{3}(a, b) \lt \beta_{2}C(a, b)+(1-\beta_{2})Q(a, b), \\ C(\alpha_{3}; a, b) & \lt T_{3}(a, b) \lt C(\beta_{3}; a, b) \end{split} \end{array}$$hold for a, b > 0 with a ≠ b, and provide new bounds for the complete elliptic integral of the second kind, where A(a, b) = (a + b)/2 is the arithmetic mean, $\begin{array}{} \displaystyle Q(a, b)=\sqrt{\left(a^{2}+b^{2}\right)/2} \end{array}$ is the quadratic mean, C(a, b) = (a2 + b2)/(a + b) is the contra-harmonic mean, C(p; a, b) = C[pa + (1 – p)b, pb + (1 – p)a] is the one-parameter contra-harmonic mean and $\begin{array}{} T_{3}(a,b)=\Big(\frac{2}{\pi}\int\limits_{0}^{\pi/2}\sqrt{a^{3}\cos^{2}\theta+b^{3}\sin^{2}\theta}\text{d}\theta\Big)^{2/3} \end{array}$ is the Toader mean of order 3.


2016 ◽  
Vol 99 (113) ◽  
pp. 237-242 ◽  
Author(s):  
Wei-Dong Jiang ◽  
Feng Qi

We find the greatest value ? and the least value ? such that the double inequality C(?a +(1-?)b, ?b + (1-?)a) < ?A(a,b) + (1-?)T(a, b)< C(?a + (1-?)b, ?b + (1-?)a) holds for all ? ? (0,1) and a, b > 0 with a ? b, where C(a,b), A(a,b), and T(a,b) denote respectively the contraharmonic, arithmetic, and Toader means of two positive numbers a and b.


2019 ◽  
Vol 2019 ◽  
pp. 1-7 ◽  
Author(s):  
Jun-Li Wang ◽  
Wei-Mao Qian ◽  
Zai-Yin He ◽  
Yu-Ming Chu

In the article, we provide several sharp bounds for the Toader mean by use of certain combinations of the arithmetic, quadratic, contraharmonic, and Gaussian arithmetic-geometric means.


Sign in / Sign up

Export Citation Format

Share Document