scholarly journals Structure and stability of recombinant bovine odorant-binding protein: II. Unfolding of the monomeric forms

Author(s):  
Olga V Stepanenko ◽  
Denis O Roginskii ◽  
Olesya V Stepanenko ◽  
Irina M Kuznetsova ◽  
Vladimir N Uversky ◽  
...  

In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its monomeric variants, the bOBP-Gly121+ mutant containing an additional glycine residue after the residue 121 of the bOBP, and the GCC-bOBP mutant obtained from the bOBP-Gly121+ form by introduction of the Trp64Cys/His155Cys double mutation to restore the canonical disulfide bond. We also analyzed the effect of the natural ligand binding on the conformational stabilities of these bOBP variants. Our data are consistent with the conclusion that the unfolding-refolding pathways of the recombinant bOBP and its mutant monomeric forms bOBP-Gly121+ and GCC-bOBP are similar and do not depend on the oligomeric status of the protein. This clearly shows that the information on the unfolding-refolding mechanism is encoded in the structure of the bOBP monomers. However, the process of the bOBP unfolding is significantly complicated by the formation of the domain-swapped dimer, and the rates of the unfolding-refolding reactions essentially depend on the conditions in which the protein is located.

2015 ◽  
Author(s):  
Olga V Stepanenko ◽  
Denis O Roginskii ◽  
Olesya V Stepanenko ◽  
Irina M Kuznetsova ◽  
Vladimir N Uversky ◽  
...  

In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its monomeric variants, the bOBP-Gly121+ mutant containing an additional glycine residue after the residue 121 of the bOBP, and the GCC-bOBP mutant obtained from the bOBP-Gly121+ form by introduction of the Trp64Cys/His155Cys double mutation to restore the canonical disulfide bond. We also analyzed the effect of the natural ligand binding on the conformational stabilities of these bOBP variants. Our data are consistent with the conclusion that the unfolding-refolding pathways of the recombinant bOBP and its mutant monomeric forms bOBP-Gly121+ and GCC-bOBP are similar and do not depend on the oligomeric status of the protein. This clearly shows that the information on the unfolding-refolding mechanism is encoded in the structure of the bOBP monomers. However, the process of the bOBP unfolding is significantly complicated by the formation of the domain-swapped dimer, and the rates of the unfolding-refolding reactions essentially depend on the conditions in which the protein is located.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1574 ◽  
Author(s):  
Olga V. Stepanenko ◽  
Denis O. Roginskii ◽  
Olesya V. Stepanenko ◽  
Irina M. Kuznetsova ◽  
Vladimir N. Uversky ◽  
...  

In a family of monomeric odorant-binding proteins (OBPs), bovine OBP (bOBP), that lacks conserved disulfide bond found in other OBPs, occupies unique niche because of its ability to form domain-swapped dimers. In this study, we analyzed conformational stabilities of the recombinant bOBP and its monomeric variants, the bOBP-Gly121+ mutant containing an additional glycine residue after the residue 121 of the bOBP, and the GCC-bOBP mutant obtained from the bOBP-Gly121+ form by introduction of the Trp64Cys/His155Cys double mutation to restore the canonical disulfide bond. We also analyzed the effect of the natural ligand binding on the conformational stabilities of these bOBP variants. Our data are consistent with the conclusion that the unfolding-refolding pathways of the recombinant bOBP and its mutant monomeric forms bOBP-Gly121+ and GCC-bOBP are similar and do not depend on the oligomeric status of the protein. This clearly shows that the information on the unfolding-refolding mechanism is encoded in the structure of the bOBP monomers. However, the process of the bOBP unfolding is significantly complicated by the formation of the domain-swapped dimer, and the rates of the unfolding-refolding reactions essentially depend on the conditions in which the protein is located.


2014 ◽  
Vol 39 (3) ◽  
pp. 183-198 ◽  
Author(s):  
Herbert Venthur ◽  
Ana Mutis ◽  
Jing-Jiang Zhou ◽  
Andrés Quiroz

2019 ◽  
Vol 412 (3) ◽  
pp. 547-554 ◽  
Author(s):  
Jiajun Tan ◽  
Valeriia Zaremska ◽  
Sierin Lim ◽  
Wolfgang Knoll ◽  
Paolo Pelosi

1998 ◽  
Vol 254 (2) ◽  
pp. 318-324 ◽  
Author(s):  
Dietrich Lobel ◽  
Silvana Marchese ◽  
Jurgen Krieger ◽  
Paolo Pelosi ◽  
Heinz Breer

Sign in / Sign up

Export Citation Format

Share Document