expression profiles
Recently Published Documents


TOTAL DOCUMENTS

16977
(FIVE YEARS 8800)

H-INDEX

186
(FIVE YEARS 43)

2022 ◽  
Vol 56 ◽  
pp. 39-49
Author(s):  
Ignazio S Piras ◽  
Matthew J. Huentelman ◽  
Federica Pinna ◽  
Pasquale Paribello ◽  
Marco Solmi ◽  
...  

2022 ◽  
Vol 12 (4) ◽  
pp. 695-700
Author(s):  
Xiumei He ◽  
Xiong Zhou ◽  
Yueyue Feng

This study intends to identify the expression profiles of micoRNAs during the recovery of damaged corneal epithelium induced by BMSCs. Differential expressions of miRNA after damage of corneal epithelium stimulated by BMSCs were analyzed based on micro-array and validated by qRT-PCR. The miRNA’s effect on cell proliferative and apoptotic activity was evaluated through transfection of plasmid with over presentation of miRNA and inhibitor of miRNA. miR-339 was significantly down-regulated in the process of recovery of the damaged corneal epithelium induced by BMSCs. Importin 13 and EGF expression was reduced after transfection of plasmid with over presentation of miR-339, which were reversed by transfection of the inhibitor of miR-339. Importin 13 was a target of miR-339. The cell proliferation and apoptosis could be restrained by miR-339 through regulation of the expression of Importin 13. In conclusion, the damaged corneal epithelium induced by BMSCs could be recovered by miR-339 through restraining Importin 13 expression, indicating that it might be a novel target for amelioration of corneal epithelium damage.


2022 ◽  
Vol 293 ◽  
pp. 110693
Author(s):  
Yu-Xin Zhao ◽  
Zhen Zhao ◽  
Chang-Song Chen ◽  
Ying Yu ◽  
Anburaj Jeyaraj ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
pp. 129-139
Author(s):  
Yoki Hirakawa ◽  
Sadaomi Sugimoto ◽  
Norimasa Tsuji ◽  
Takeshi Inamoto ◽  
Hiroshi Maeda

Enterococcus faecalis is an etiological agent of endodontic infections. The present study was performed to investigate the gene profiles of E. faecalis induced by type I collagen stimulation. E. faecalis ATCC 19433 was cultivated with [collagen (+)] or without type I collagen [collagen (−)], and transcriptome analysis was performed using high-throughput sequencing technology. A total of 3.6 gb of information was obtained by sequence analysis and 77 differentially expressed genes (DEGs) between the two culture conditions were identified. Among the 77 DEGs, 35 genes were upregulated in collagen (+) E. faecalis, whereas 42 genes were downregulated. Gene Ontology (GO) enrichment analysis was performed and 11 GO terms, including metalloendopeptidase activity (GO:0004222) and two related GO terms (GO:0031012, GO:0044421), were significantly enriched in the set of upregulated genes. We focused on an upregulated DEG belonging to the matrixin metalloprotease gene family, and matrix metalloprotease (MMP) activities of the bacterial cell were examined. The generic MMP, MMP-8, and MMP-9 activities of collagen (+) E. faecalis were significantly higher than those of collagen (−) E. faecalis. These results suggested that contact with type I collagen may alter the gene expression profile of E. faecalis, and upregulation of metalloprotease genes may result in enhanced MMP activities in E. faecalis.


2022 ◽  
Vol 12 ◽  
Author(s):  
Xiaozhe Yi ◽  
Xingwen Wang ◽  
Lan Wu ◽  
Mengyue Wang ◽  
Liu Yang ◽  
...  

Artemisia argyi is a valuable traditional medicinal plant in Asia. The essential oil from its leaves is rich in terpenoids and has been used to enhance health and well-being. In China, the market scale of industries related to A. argyi has attained tens of billions of Chinese Yuan. The basic helix-loop-helix (bHLH) family is one of the largest transcription factors families in plants that plays crucial roles in diverse biological processes and is an essential regulatory component of terpenoid biosynthesis. However, the bHLH TFs and their regulatory roles in A. argyi remain unknown. Here, 53 AarbHLH genes were identified from the transcriptome of A. argyi and were classified into 15 subfamilies based on the classification of bHLH proteins in Arabidopsis thaliana. The MEME analysis showed that the conserved motif 1 and motif 2 constituted the most conserved bHLH domain and distributed in most AarbHLH proteins. Additionally, integrated analysis of the expression profiles of AarbHLH genes and the contents of targeted terpenoids in different tissues group and JA-treated group were performed. Eleven up-regulated AarbHLHs and one down-regulated AarbHLH were screened as candidate genes that may participate in the regulation of terpenoid biosynthesis (TPS-AarbHLHs). Correlation analysis between gene expression and terpenoid contents indicated that the gene expression of these 12 TPS-AarbHLHs was significantly correlated with the content changes of 1,8-cineole or β-caryophyllene. Protein–protein interaction networks further illustrated that these TPS-AarbHLHs might be involved in terpenoid biosynthesis in A. argyi. This finding provides a basis to further investigate the regulation mechanism of AarbHLH genes in terpenoid biosynthesis, and will be helpful to improve the quality of A. argyi.


2022 ◽  
Vol 11 ◽  
Author(s):  
Haijuan Gu ◽  
Yuejiao Zhong ◽  
Jibin Liu ◽  
Qian Shen ◽  
Rong Wei ◽  
...  

Gastric cancer is a deadly human malignancy and the molecular mechanisms underlying gastric cancer pathophysiology are very complicated. Thus, further investigations are warranted to decipher the underlying molecular mechanisms. With the development of high-throughput screening and bioinformatics, gene expression profiles with large scale have been performed in gastric cancer. In the present study, we mined The Cancer Genome Atlas (TCGA) database and analyzed the gene expression profiles between gastric cancer tissues and normal gastric tissues. A series of differentially expressed lncRNAs, miRNAs and mRNAs between gastric cancer tissues and normal gastric tissues were identified. Based on the differentially expressed genes, we constructed miRNA-mRNA network, lncRNA-mRNA network and transcriptional factors-mRNA-miRNA-lncRNA network. Furthermore, the Kaplan survival analysis showed that high expression levels of EVX1, GBX2, GCM1, HOXC8, HOXC9, HOXC10, HOXC11, HOXC12 and HOXC13 were all significantly correlated with shorter overall survival of the patients with gastric cancer. On the other hand, low expression level of HOXA13 was associated with shorter overall survival of patients with gastric cancer. Among these hub genes, we performed the in vitro functional studies of HOXC8 in the gastric cancer cells. Knockdown of HOXC8 and overexpression of miR-4256 both significantly repressed the gastric cancer cell proliferation and migration, and miR-4256 repressed the expression of HOXC8 via targeting its 3’ untranslated region in gastric cancer cells. Collectively, our results revealed that a complex interaction networks of differentially expressed genes in gastric cancer, and further functional studies indicated that miR-4256/HOXC8 may be an important axis in regulating gastric cancer progression.


2022 ◽  
Author(s):  
Hu Zeng ◽  
Jiahao Huang ◽  
Haowen Zhou ◽  
William J. Meilandt ◽  
Borislav Dejanovic ◽  
...  

Amyloid-β plaques and neurofibrillary tau tangles are the neuropathologic hallmarks of Alzheimer's disease (AD), but the spatiotemporal cellular responses and molecular mechanisms underlying AD pathophysiology remain poorly understood. Here we introduce STARmap PLUS to simultaneously map single-cell transcriptional states and disease marker proteins in brain tissues of AD mouse models at subcellular resolution (200 nm). This high-resolution spatial transcriptomics map revealed a core-shell structure where disease-associated microglia (DAM) closely contact amyloid-β plaques, whereas disease-associated astrocytes (DAA) and oligodendrocyte precursor cells (OPC) are enriched in the outer shells surrounding the plaque-DAM complex. Hyperphosphorylated tau emerged mainly in excitatory neurons in the CA1 region accompanied by the infiltration of oligodendrocyte subtypes into the axon bundles of hippocampal alveus. The integrative STARmap PLUS method bridges single-cell gene expression profiles with tissue histopathology at subcellular resolution, providing an unprecedented roadmap to pinpoint the molecular and cellular mechanisms of AD pathology and neurodegeneration.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 155
Author(s):  
Nicholas J. Barrett ◽  
Jakob Thyrring ◽  
Elizabeth M. Harper ◽  
Mikael K. Sejr ◽  
Jesper G. Sørensen ◽  
...  

Increases in Arctic temperatures have accelerated melting of the Greenland icesheet, exposing intertidal organisms, such as the blue mussel Mytilus edulis, to high air temperatures and low salinities in summer. However, the interaction of these combined stressors is poorly described at the transcriptional level. Comparing expression profiles of M. edulis from experimentally warmed (30 °C and 33 °C) animals kept at control (23‰) and low salinities (15‰) revealed a significant lack of enrichment for Gene Ontology terms (GO), indicating that similar processes were active under all conditions. However, there was a progressive increase in the abundance of upregulated genes as each stressor was applied, with synergistic increases at 33 °C and 15‰, suggesting combined stressors push the animal towards their tolerance thresholds. Further analyses comparing the effects of salinity alone (23‰, 15‰ and 5‰) showed high expression of stress and osmoregulatory marker genes at the lowest salinity, implying that the cell is carrying out intracellular osmoregulation to maintain the cytosol as hyperosmotic. Identification of aquaporins and vacuolar-type ATPase transcripts suggested the cell may use fluid-filled cavities to excrete excess intracellular water, as previously identified in embryonic freshwater mussels. These results indicate that M. edulis has considerable resilience to heat stress and highly efficient mechanisms to acclimatise to lowered salinity in a changing world.


Sign in / Sign up

Export Citation Format

Share Document