XLIII. Variation of the Amplitude of a Continuous Function along a Continuous Curve

1947 ◽  
pp. 171-173
1930 ◽  
Vol 26 (4) ◽  
pp. 480-483
Author(s):  
S. Verblunsky

This note is a sequel to a former one, a knowledge of which will be assumed. We here develop the methods of that note to give a proof of Jordan's Theorem. We write ind C (P) for 1/2π times the absolute value of the change in log (z − P) as z describes the continuous arc C. If C is a Jordan curve, ind C (P) is either 0 or 1. Further, if C is a polygonal line, the index is a continuous function of P. If C is a closed continuous curve, interior to a circle to which P is exterior, then ind C (P) = 0.


2017 ◽  
Vol 4 (ICBS Conference) ◽  
pp. 1-17 ◽  
Author(s):  
Alias Khalaf ◽  
Sarhad Nami

2021 ◽  
Vol 7 (1) ◽  
pp. 88-99
Author(s):  
Zanyar A. Ameen

AbstractThe notions of almost somewhat near continuity of functions and near regularity of spaces are introduced. Some properties of almost somewhat nearly continuous functions and their connections are studied. At the end, it is shown that a one-to-one almost somewhat nearly continuous function f from a space X onto a space Y is somewhat nearly continuous if and only if the range of f is nearly regular.


2020 ◽  
Vol 9 (7) ◽  
pp. 5251-5255
Author(s):  
S. Savitha ◽  
S. Gomathi

1992 ◽  
Vol 18 (1) ◽  
pp. 270 ◽  
Author(s):  
Borsík
Keyword(s):  

2020 ◽  
Vol 39 (6) ◽  
pp. 1-16
Author(s):  
Peihan Tu ◽  
Li-Yi Wei ◽  
Koji Yatani ◽  
Takeo Igarashi ◽  
Matthias Zwicker
Keyword(s):  

2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Kusano Takaŝi ◽  
Jelena V. Manojlović

AbstractWe study the asymptotic behavior of eventually positive solutions of the second-order half-linear differential equation(p(t)\lvert x^{\prime}\rvert^{\alpha}\operatorname{sgn}x^{\prime})^{\prime}+q(% t)\lvert x\rvert^{\alpha}\operatorname{sgn}x=0,where q is a continuous function which may take both positive and negative values in any neighborhood of infinity and p is a positive continuous function satisfying one of the conditions\int_{a}^{\infty}\frac{ds}{p(s)^{1/\alpha}}=\infty\quad\text{or}\quad\int_{a}^% {\infty}\frac{ds}{p(s)^{1/\alpha}}<\infty.The asymptotic formulas for generalized regularly varying solutions are established using the Karamata theory of regular variation.


2019 ◽  
Vol 52 (1) ◽  
pp. 482-489 ◽  
Author(s):  
Andriy Bandura ◽  
Oleh Skaskiv ◽  
Liana Smolovyk

AbstractIn the paper we investigate slice holomorphic functions F : ℂn → ℂ having bounded L-index in a direction, i.e. these functions are entire on every slice {z0 + tb : t ∈ℂ} for an arbitrary z0 ∈ℂn and for the fixed direction b ∈ℂn \ {0}, and (∃m0 ∈ ℤ+) (∀m ∈ ℤ+) (∀z ∈ ℂn) the following inequality holds{{\left| {\partial _{\bf{b}}^mF(z)} \right|} \over {m!{L^m}(z)}} \le \mathop {\max }\limits_{0 \le k \le {m_0}} {{\left| {\partial _{\bf{b}}^kF(z)} \right|} \over {k!{L^k}(z)}},where L : ℂn → ℝ+ is a positive continuous function, {\partial _{\bf{b}}}F(z) = {d \over {dt}}F\left( {z + t{\bf{b}}} \right){|_{t = 0}},\partial _{\bf{b}}^pF = {\partial _{\bf{b}}}\left( {\partial _{\bf{b}}^{p - 1}F} \right)for p ≥ 2. Also, we consider index boundedness in the direction of slice holomorphic solutions of some partial differential equations with partial derivatives in the same direction. There are established sufficient conditions providing the boundedness of L-index in the same direction for every slie holomorphic solutions of these equations.


2021 ◽  
pp. 1-17
Author(s):  
SINA GREENWOOD ◽  
SONJA ŠTIMAC

Abstract For a continuous function $f:[0,1] \to [0,1]$ we define a splitting sequence admitted by f and show that the inverse limit of f is an arc if and only if f does not admit a splitting sequence.


Sign in / Sign up

Export Citation Format

Share Document