scholarly journals Theoretical research on an efficient population transfer based on two different laser pulse sequences

2017 ◽  
Vol 66 (21) ◽  
pp. 213301
Author(s):  
Zhang Lu ◽  
Yan Lu-Yao ◽  
Bao Hui-Han ◽  
Chai Xiao-Qian ◽  
Ma Dan-Dan ◽  
...  
2008 ◽  
Vol 17 (12) ◽  
pp. 4476-4480 ◽  
Author(s):  
Zhang Xian-Zhou ◽  
Ren Zhen-Zhong ◽  
Jia Guang-Rui ◽  
Guo Xiao-Tian ◽  
Gong Wei-Gui

2009 ◽  
Vol 58 (12) ◽  
pp. 8230
Author(s):  
Ren Li-Chun ◽  
Zhou Lin ◽  
Li Run-Bing ◽  
Liu Min ◽  
Wang Jin ◽  
...  

1986 ◽  
Vol 6 (1) ◽  
pp. 47-60 ◽  
Author(s):  
Mark A. Banash ◽  
Warren S. Warren

Conventional coherent pulse sequences such as photon echoes measure only highly averaged relaxation rates in complex multilevel systems, such as molecules undergoing state-changing collisions. Pulse frequency, phase, and shape control lets us generate sequences which give a more detailed understanding of the dynamics. Results of dual frequency, crafted shape sequences on I2 are presented which show that the "coherence dephasing" time T2 is primarily due to population redistribution (energy changing collisions) in the electronically excited state, and that the electronic ground state has a much smaller cross section for such collisions. Quantitative analysis is only possible with modified laser pulse shapes which excite a single velocity component, and requires pulse sequences which correct for the hyperfine dependence of predissociation. Since this correction is rarely made in previously reported coherent transient measurements, literature values of T2 and T1 may not be reliable in the zero pressure limit.


Sign in / Sign up

Export Citation Format

Share Document