scholarly journals Multilabel convolution neural network for facial expression recognition and ordinal intensity estimation

2021 ◽  
Vol 7 ◽  
pp. e736
Author(s):  
Olufisayo Ekundayo ◽  
Serestina Viriri

Facial Expression Recognition (FER) has gained considerable attention in affective computing due to its vast area of applications. Diverse approaches and methods have been considered for a robust FER in the field, but only a few works considered the intensity of emotion embedded in the expression. Even the available studies on expression intensity estimation successfully assigned a nominal/regression value or classified emotion in a range of intervals. Most of the available works on facial expression intensity estimation successfully present only the emotion intensity estimation. At the same time, others proposed methods that predict emotion and its intensity in different channels. These multiclass approaches and extensions do not conform to man heuristic manner of recognising emotion and its intensity estimation. This work presents a Multilabel Convolution Neural Network (ML-CNN)-based model, which could simultaneously recognise emotion and provide ordinal metrics as the intensity estimation of the emotion. The proposed ML-CNN is enhanced with the aggregation of Binary Cross-Entropy (BCE) loss and Island Loss (IL) functions to minimise intraclass and interclass variations. Also, ML-CNN model is pre-trained with Visual Geometric Group (VGG-16) to control overfitting. In the experiments conducted on Binghampton University 3D Facial Expression (BU-3DFE) and Cohn Kanade extension (CK+) datasets, we evaluate ML-CNN’s performance based on accuracy and loss. We also carried out a comparative study of our model with some popularly used multilabel algorithms using standard multilabel metrics. ML-CNN model simultaneously predicts emotion and intensity estimation using ordinal metrics. The model also shows appreciable and superior performance over four standard multilabel algorithms: Chain Classifier (CC), distinct Random K label set (RAKEL), Multilabel K Nearest Neighbour (MLKNN) and Multilabel ARAM (MLARAM).

2020 ◽  
Vol 8 (2) ◽  
pp. 68-84
Author(s):  
Naoki Imamura ◽  
Hiroki Nomiya ◽  
Teruhisa Hochin

Facial expression intensity has been proposed to digitize the degree of facial expressions in order to retrieve impressive scenes from lifelog videos. The intensity is calculated based on the correlation of facial features compared to each facial expression. However, the correlation is not determined objectively. It should be determined statistically based on the contribution score of the facial features necessary for expression recognition. Therefore, the proposed method recognizes facial expressions by using a neural network and calculates the contribution score of input toward the output. First, the authors improve some facial features. After that, they verify the score correctly by comparing the accuracy transitions depending on reducing useful and useless features and process the score statistically. As a result, they extract useful facial features from the neural network.


2018 ◽  
Vol 84 ◽  
pp. 251-261 ◽  
Author(s):  
Yuanyuan Liu ◽  
Xiaohui Yuan ◽  
Xi Gong ◽  
Zhong Xie ◽  
Fang Fang ◽  
...  

Webology ◽  
2020 ◽  
Vol 17 (2) ◽  
pp. 804-816
Author(s):  
Elaf J. Al Taee ◽  
Qasim Mohammed Jasim

A facial expression is a visual impression of a person's situations, emotions, cognitive activity, personality, intention and psychopathology, it has an active and vital role in the exchange of information and communication between people. In machines and robots which dedicated to communication with humans, the facial expressions recognition play an important and vital role in communication and reading of what is the person implies, especially in the field of health. For that the research in this field leads to development in communication with the robot. This topic has been discussed extensively, and with the progress of deep learning and use Convolution Neural Network CNN in image processing which widely proved efficiency, led to use CNN in the recognition of facial expressions. Automatic system for Facial Expression Recognition FER require to perform detection and location of faces in a cluttered scene, feature extraction, and classification. In this research, the CNN used for perform the process of FER. The target is to label each image of facial into one of the seven facial emotion categories considered in the JAFFE database. JAFFE facial expression database with seven facial expression labels as sad, happy, fear, surprise, anger, disgust, and natural are used in this research. We trained CNN with different depths using gray-scale images from the JAFFE database.The accuracy of proposed system was 100%.


Sign in / Sign up

Export Citation Format

Share Document