scholarly journals Ordinary kriging vs inverse distance weighting: spatial interpolation of the sessile community of Madagascar reef, Gulf of Mexico

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4078 ◽  
Author(s):  
Salvador Zarco-Perello ◽  
Nuno Simões

Information about the distribution and abundance of the habitat-forming sessile organisms in marine ecosystems is of great importance for conservation and natural resource managers. Spatial interpolation methodologies can be useful to generate this information from in situ sampling points, especially in circumstances where remote sensing methodologies cannot be applied due to small-scale spatial variability of the natural communities and low light penetration in the water column. Interpolation methods are widely used in environmental sciences; however, published studies using these methodologies in coral reef science are scarce. We compared the accuracy of the two most commonly used interpolation methods in all disciplines, inverse distance weighting (IDW) and ordinary kriging (OK), to predict the distribution and abundance of hard corals, octocorals, macroalgae, sponges and zoantharians and identify hotspots of these habitat-forming organisms using data sampled at three different spatial scales (5, 10 and 20 m) in Madagascar reef, Gulf of Mexico. The deeper sandy environments of the leeward and windward regions of Madagascar reef were dominated by macroalgae and seconded by octocorals. However, the shallow rocky environments of the reef crest had the highest richness of habitat-forming groups of organisms; here, we registered high abundances of octocorals and macroalgae, with sponges, Millepora alcicornis and zoantharians dominating in some patches, creating high levels of habitat heterogeneity. IDW and OK generated similar maps of distribution for all the taxa; however, cross-validation tests showed that IDW outperformed OK in the prediction of their abundances. When the sampling distance was at 20 m, both interpolation techniques performed poorly, but as the sampling was done at shorter distances prediction accuracies increased, especially for IDW. OK had higher mean prediction errors and failed to correctly interpolate the highest abundance values measured in situ, except for macroalgae, whereas IDW had lower mean prediction errors and high correlations between predicted and measured values in all cases when sampling was every 5 m. The accurate spatial interpolations created using IDW allowed us to see the spatial variability of each taxa at a biological and spatial resolution that remote sensing would not have been able to produce. Our study sets the basis for further research projects and conservation management in Madagascar reef and encourages similar studies in the region and other parts of the world where remote sensing technologies are not suitable for use.

2015 ◽  
Vol 12 (2) ◽  
pp. 1475-1508
Author(s):  
X. Fu ◽  
X. Liu ◽  
Y. Li ◽  
J. Shen ◽  
Y. Wang ◽  
...  

Abstract. Tea fields emit large amounts of nitrous oxide (N2O) to the atmosphere. Obtaining accurate estimations of N2O emissions from tea-planted soils is challenging due to strong spatial variability. We examined the spatial variability of N2O emissions from a red-soil tea field in Hunan province, China, on 22 April 2012 (in a wet season) using 147 static mini chambers approximately regular gridded in a 4.0 ha tea field. The N2O fluxes for a 30 min snapshot (10–10.30 a.m.) ranged from −1.73 to 1659.11 g N ha−1 d−1 and were positively skewed with an average flux of 102.24 g N ha−1 d−1. The N2O flux data were transformed to a normal distribution by using a logit function. The geostatistical analyses of our data indicated that the logit-transformed N2O fluxes (FLUX30t) exhibited strong spatial autocorrelation, which was characterized by an exponential semivariogram model with an effective range of 25.2 m. As observed in the wet season, the logit-transformed soil ammonium-N (NH4Nt), soil nitrate-N (NO3Nt), soil organic carbon (SOCt), total soil nitrogen (TSNt) were all found to be significantly correlated with FLUX30t (r=0.57–0.71, p<0.001). Three spatial interpolation methods (ordinary kriging, regression kriging and cokriging) were applied to estimate the spatial distribution of N2O emissions over the study area. Cokriging with NH4Nt and NO3Nt as covariables (r= 0.74 and RMSE =1.18) outperformed ordinary kriging (r= 0.18 and RMSE =1.74), regression kriging with the sample position as a predictor (r= 0.49 and RMSE =1.55) and cokriging with SOCt as a covariable (r= 0.58 and RMSE =1.44). The predictions of the three kriging interpolation methods for the total N2O emissions of the 4.0 ha tea field ranged from 148.2 to 208.1 g N d−1, based on the 30 min snapshots obtained during the wet season. Our findings suggested that to accurately estimate the total N2O emissions over a region, the environmental variables (e.g., soil properties) and the current land use pattern (e.g., tea row transects in the present study) must be included in spatial interpolation. Additionally, compared with other kriging approaches, the cokriging prediction approach showed great advantages in being easily deployed, and more importantly providing accurate regional estimation of N2O emissions from tea-planted soils.


2021 ◽  
Author(s):  
Nawinda Chutsagulprom ◽  
Kuntalee Chaisee ◽  
Ben Wongsaijai ◽  
Papangkorn Inkeaw ◽  
Chalump Oonariya

Abstract Spatial interpolation methods usually differ in their underlying mathematical concepts, each with inherent advantages and drawbacks depending on the properties of data. This paper, therefore, aims to compare and evaluate the performances of well-established interpolation techniques for estimating monthly rainfall data in Thailand. The selected methods include the inverse distance-based method, multiple linear regression (MLR), artificial neural networks (ANN), and ordinary kriging (OK). The technique of searching nearest stations is additionally imposed for some aforementioned schemes. The k -fold cross-validation method is exploited to assess the efficiency of each method, then the metric scores, RMSE, and MAE are used for comparisons. The results suggest the ANN might be the least favorite as it underperforms in many folds. While the OK method provides the most accurate prediction, the inverse distance weighting (IDW), particularly inverse exponential weighting (IEW), and MLR are considerably comparative. Overall, IEW is plausible for monthly rainfall estimation of Thailand because it is less computationally expensive than the OK and its flexible computation.


2021 ◽  
Author(s):  
Ira L. Parsons ◽  
Melanie R. Boudreau ◽  
Brandi B. Karisch ◽  
Amanda E. Stone ◽  
Durham Norman ◽  
...  

Abstract Context Obtaining accurate maps of landscape features often requires intensive spatial sampling and interpolation. The data required to generate reliable interpolated maps varies with spatial scale and landscape heterogeneity. However, there has been no rigorous examination of sampling density relative to landscape characteristics and interpolation methods.ObjectivesOur objective was to characterize the 3-way relationship among sampling density, interpolation method, and landscape heterogeneity on interpolation accuracy in simulated and in situ landscapes. MethodsWe simulated landscapes of variable heterogeneity and sampled at increasing densities using both systematic and random strategies. We applied each of three local interpolation methods: Inverse Distance Weighting, Universal Kriging, and Nearest Neighbor — to the sampled data and estimated accuracy (R2) between interpolated surfaces and the original surface. Finally, we applied these analyses to in situ data, using a normalized difference vegetation index raster collected from pasture with various resolutions.Results All interpolation methods and sampling strategies resulted in similar accuracy; however, low heterogeneity yielded the highest R2 values at high sampling densities. In situ results showed that Universal Kriging performed best with systematic sampling, and inverse distance weighting with random sampling. Heterogeneity decreased with resolution, which increased accuracy of all interpolation methods. Landscape heterogeneity had the greatest effect on accuracy.ConclusionsHeterogeneity of the original landscape is the most significant factor in determining the accuracy of interpolated maps. There is a need to create structured tools to aid in determining sampling design most appropriate for interpolation methods across landscapes of various heterogeneity.


2015 ◽  
Vol 12 (12) ◽  
pp. 3899-3911 ◽  
Author(s):  
X. Fu ◽  
X. Liu ◽  
Y. Li ◽  
J. Shen ◽  
Y. Wang ◽  
...  

Abstract. Tea fields emit large amounts of nitrous oxide (N2O) to the atmosphere. Obtaining accurate estimations of N2O emissions from tea-planted soils is challenging due to strong spatial variability. We examined the spatial variability in N2O emissions from a red-soil tea field in Hunan Province, China, on 22 April 2012 (in a wet season) using 147 static mini chambers approximately regular gridded in a 4.0 ha tea field. The N2O fluxes for a 30 min snapshot (10:00–10:30 a.m.) ranged from −1.73 to 1659.11 g N ha−1 d−1 and were positively skewed with an average flux of 102.24 g N ha−1 d−1. The N2O flux data were transformed to a normal distribution by using a logit function. The geostatistical analyses of our data indicated that the logit-transformed N2O fluxes (FLUX30t) exhibited strong spatial autocorrelation, which was characterized by an exponential semivariogram model with an effective range of 25.2 m. As observed in the wet season, the logit-transformed soil ammonium-N (NH4Nt), soil nitrate-N (NO3Nt), soil organic carbon (SOCt) and total soil nitrogen (TSNt) were all found to be significantly correlated with FLUX30t (r = 0.57–0.71, p < 0.001). Three spatial interpolation methods (ordinary kriging, regression kriging and cokriging) were applied to estimate the spatial distribution of N2O emissions over the study area. Cokriging with NH4Nt and NO3Nt as covariables (r = 0.74 and RMSE = 1.18) outperformed ordinary kriging (r = 0.18 and RMSE = 1.74), regression kriging with the sample position as a predictor (r = 0.49 and RMSE = 1.55) and cokriging with SOCt as a covariable (r = 0.58 and RMSE = 1.44). The predictions of the three kriging interpolation methods for the total N2O emissions of 4.0 ha tea field ranged from 148.2 to 208.1 g N d−1, based on the 30 min snapshots obtained during the wet season. Our findings suggested that to accurately estimate the total N2O emissions over a region, the environmental variables (e.g., soil properties) and the current land use pattern (e.g., tea row transects in the present study) must be included in spatial interpolation. Additionally, compared with other kriging approaches, the cokriging prediction approach showed great advantages in being easily deployed and, more importantly, providing accurate regional estimation of N2O emissions from tea-planted soils.


2017 ◽  
Vol 47 (12) ◽  
pp. 1646-1658 ◽  
Author(s):  
P. Jain ◽  
M.D. Flannigan

Spatial interpolation of fire weather variables from station data allow fire danger indices to be mapped continuously across the landscape. This information is crucial to fire management agencies, particularly in areas where weather data are sparse. We compare the performance of several standard interpolation methods (inverse distance weighting, spline, and geostatistical interpolation methods) for estimating output from the Canadian Fire Weather Index (FWI) system at unmonitored locations. We find that geostatistical methods (kriging) generally outperform the other methods, particularly when elevation is used as a covariate. We also find that interpolation of the input meteorological variables and the previous day’s moisture codes to unmonitored locations followed by calculation of the FWI output variables is preferable to first calculating the FWI output variables and then interpolating, in contrast to previous studies. Alternatively, when the previous day’s moisture codes are estimated from interpolated weather, rather than directly interpolated, errors can accumulate and become large. This effect is particularly evident for the duff moisture code and drought moisture code due to their significant autocorrelation.


Sign in / Sign up

Export Citation Format

Share Document