weather data
Recently Published Documents


TOTAL DOCUMENTS

2663
(FIVE YEARS 1109)

H-INDEX

55
(FIVE YEARS 11)

Author(s):  
Naveen Lingaraju ◽  
Hosaagrahara Savalegowda Mohan

Weather forecast is significantly imperative in today’s smart technological world. A precise forecast model entails a plentiful data in order to attain the most accurate predictions. However, a forecast of future rainfall from historical data samples has always been challenging and key area of research. Hence, in modern weather forecasting a combo of computer models, observation, and knowledge of trends and patterns are introduced. This research work has presented a fitness function based adaptive artificial neural network scheme in order to forecast rainfall and temperature for upcoming decade (2021-2030) using historical weather data of 20 different districts of Karnataka state. Furthermore, effects of these forecasted weather parameters are realized over five major crops of Karnataka namely rice, wheat, jowar, maize, and ragi with the intention of evaluation for efficient crop management in terms of the passing relevant messages to the farmers and alternate measures such as suggesting other geographical locations to grow the same crop or growing other suitable crops at same geographical location. A graphical user interface (GUI) application has been developed for the proposed work in order to ease out the flow of work.


2022 ◽  
Vol 53 (3) ◽  
pp. 466-486
Author(s):  
Cindy Cindy ◽  
Cynthia Cynthia ◽  
Valentino Vito ◽  
Devvi Sarwinda ◽  
Bevina Desjwiandra Handari ◽  
...  

In Indonesia, Dengue incidence tends to increase every year but has been fluctuating in recent years. The potential for Dengue outbreaks in DKI Jakarta, the capital city, deserves serious attention. Weather factors are suspected of being associated with the incidence of Dengue in Indonesia. This research used weather and Dengue incidence data for five regions of DKI Jakarta, Indonesia, from December 30, 2008, to January 2, 2017. The study used a clustering approach on time-series and non-time-series data using K-Medoids and Fuzzy C-Means Clustering. The clustering results for the non-time-series data showed a positive correlation between the number of Dengue incidents and both average relative humidity and amount of rainfall. However, Dengue incidence and average temperature were negatively correlated. Moreover, the clustering implementation on the time-series data showed that rainfall patterns most closely resembled those of Dengue incidence. Therefore, rainfall can be used to estimate Dengue incidence. Both results suggest that the government could utilize weather data to predict possible spikes in DHF incidence, especially when entering the rainy season and alert the public to greater probability of a Dengue outbreak.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 160
Author(s):  
Pyae-Pyae Phyo ◽  
Yung-Cheol Byun ◽  
Namje Park

Meeting the required amount of energy between supply and demand is indispensable for energy manufacturers. Accordingly, electric industries have paid attention to short-term energy forecasting to assist their management system. This paper firstly compares multiple machine learning (ML) regressors during the training process. Five best ML algorithms, such as extra trees regressor (ETR), random forest regressor (RFR), light gradient boosting machine (LGBM), gradient boosting regressor (GBR), and K neighbors regressor (KNN) are trained to build our proposed voting regressor (VR) model. Final predictions are performed using the proposed ensemble VR and compared with five selected ML benchmark models. Statistical autoregressive moving average (ARIMA) is also compared with the proposed model to reveal results. For the experiments, usage energy and weather data are gathered from four regions of Jeju Island. Error measurements, including mean absolute percentage error (MAPE), mean absolute error (MAE), and mean squared error (MSE) are computed to evaluate the forecasting performance. Our proposed model outperforms six baseline models in terms of the result comparison, giving a minimum MAPE of 0.845% on the whole test set. This improved performance shows that our approach is promising for symmetrical forecasting using time series energy data in the power system sector.


Abstract Besides solving the equations of momentum, heat, and moisture transport on the model grid, mesoscale weather models must account for subgrid-scale processes that affect the resolved model variables. These are simulated with model parameterizations, which often rely on values preset by the user. Such ‘free’ model parameters, along with others set to initialize the model, are often poorly constrained, requiring that a user select each from a range of plausible values. Finding the values to optimize any forecasting tool can be accomplished with a search algorithm, and one such process – the genetic algorithm (GA) – has become especially popular. As applied to modeling, GAs represent a Darwinian process – an ensemble of simulations is run with a different set of parameter values for each member, and the members subsequently judged to be most accurate are selected as ‘parents’ who pass their parameters onto a new generation. At the Department of Energy’s Savannah River Site in South Carolina, we are applying a GA to the Regional Atmospheric Modeling System (RAMS) mesoscale weather model, which supplies input to a model to simulate the dispersion of an airborne contaminant as part of the site’s emergency response preparations. An ensemble of forecasts is run each day, weather data are used to ‘score’ the individual members of the ensemble, and the parameters from the best members are used for the next day’s forecasts. As meteorological conditions change, the parameters change as well, maintaining a model configuration that is best adapted to atmospheric conditions.


2022 ◽  
Author(s):  
Laura Morales ◽  
Kelly Swarts

We leveraged publicly available data on juvenile tree height of 299 Central European Norway spruce populations grown in a common garden experiment across 24 diverse trial locations in Austria and weather data from the trial locations and population provenances to parse the heritable and climatic components of tree height variation. Principal component analysis of geospatial and weather variables demonstrated high interannual variation among trial environments, largely driven by differences in precipitation, and separation of population provenances based on altitude, temperature, and snowfall. Tree height was highly heritable and genetic variation for tree height was strongly associated with climatic relationships among population provenances. Modeling the covariance between populations and trial environments based on climatic data increased the heritable signal for tree height.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
K. S. ARAVIND ◽  
ANANTA VASHISTH ◽  
P. KRISHANAN ◽  
B.DAS

Wheat yield production is largely attributed by weather parameters. Model developed by multiple linear, neural network and penalised regression techniques using weather data have the potential to provide reliable, timely and cost-effective prediction of wheat yield. Wheat yield data and weather parameter during crop growing period (46th to 15th SMW) for more than 30 years were collected for study area and model was developed using stepwise multiple linear regression (SMLR), principal component analysis (PCA) in combination with SMLR, artificial neural network (ANN) alone and in combination with PCA, least absolute shrinkage and selection operator (LASSO) and elastic net (ENET) techniques.  Analysis was carried out by fixing 70% of the data for calibration and remaining dataset for validation. On examining these models, LASSO and elastic net are performing excellent having nRMSE value less than 10 % for four out of five location and good for one location, because of prevention in over fitting and reducing regression coefficient by penalization.


Electricity ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 16-32
Author(s):  
Constance Crozier ◽  
Christopher Quarton ◽  
Noramalina Mansor ◽  
Dario Pagnano ◽  
Ian Llewellyn

In this paper, we explore how effectively renewable generation can be used to meet a country’s electricity demands. We consider a range of different generation mixes and capacities, as well as the use of energy storage. First, we introduce a new open-source model that uses hourly wind speed and solar irradiance data to estimate the output of a renewable electricity generator at a specific location. Then, we construct a case study of the Great Britain (GB) electricity system as an example using historic hourly demand and weather data. Three specific sources of renewable generation are considered: offshore wind, onshore wind, and solar PV. Li-ion batteries are considered as the form of electricity storage. We demonstrate that the ability of a renewables-based electricity system to meet expected demand profiles can be increased by optimising the ratio of onshore wind, offshore wind and solar PV. Additionally, we show how including Li-ion battery storage can reduce overall generation needs, therefore lowering system costs. For the GB system, we explore how the residual load that would need to be met with other forms of flexibility, such as dispatchable generation sources or demand-side response, varies for different ratios of renewable generation and storage.


Eos ◽  
2022 ◽  
Vol 103 ◽  
Author(s):  
Aaron Sidder

A novel approach to weather forecasting uses convolutional neural networks to generate exceptionally fast global forecasts based on past weather data.


2022 ◽  
Vol 24 (1) ◽  
Author(s):  
MAHESH CHAND SINGH ◽  
SHIVAM POONIA ◽  
SANJAY SATPUTE ◽  
VISHNU PRASAD ◽  
SOMPAL SINGH

Sign in / Sign up

Export Citation Format

Share Document