scholarly journals Acoustic Identification of Inner Materials in a Single-layer Cylindrical Shell with Resonance Scattering Theory

2015 ◽  
Vol 34 (4) ◽  
pp. 257-263
Author(s):  
Young-Tae Jo ◽  
Wan-Gu Kim ◽  
Suk Wang Yoon
2021 ◽  
Vol 10 (1) ◽  
pp. 414-430
Author(s):  
Chunwei Zhang ◽  
Qiao Jin ◽  
Yansheng Song ◽  
Jingli Wang ◽  
Li Sun ◽  
...  

Abstract The sandwich structures are three- or multilayered structures such that their mechanical properties are better than each single layer. In the current research, a three-layered cylindrical shell including a functionally graded porous core and two reinforced nanocomposite face sheets resting on the Pasternak foundation is used as model to provide a comprehensive understanding of vibrational behavior of such structures. The core is made of limestone, while the epoxy is utilized as the top and bottom layers’ matrix phase and also it is reinforced by the graphene nanoplatelets (GNPs). The pattern of the GNPs dispersion and the pores distribution play a crucial role at the continuous change of the layers’ properties. The sinusoidal shear deformation shells theory and the Hamilton’s principle are employed to derive the equations of motion for the mentioned cylindrical sandwich shell. Ultimately, the impacts of the model’s geometry, foundation moduli, mode number, and deviatory radius on the vibrational behavior are investigated and discussed. It is revealed that the natural frequency and rotation angle of the sandwich shell are directly related. Moreover, mid-radius to thickness ratio enhancement results in the natural frequency reduction. The results of this study can be helpful for the future investigations in such a broad context. Furthermore, for the pipe factories current study can be effective at their designing procedure.


2014 ◽  
Vol 919-921 ◽  
pp. 169-176 ◽  
Author(s):  
Ming Liang Zhu ◽  
Yan Sun

The Suspended Latticed Intersected Cylindrical Shell (SLICS) is a new structural system, composed by the single layer Latticed Intersected Cylindrical Shell (LICS) and the prestressed cable-strut system. Mechanical properties of this structure were investigated through nonlinear buckling analysis by the consistent imperfect buckling analysis method, compared with the single layer LICS. Structure parameters including prestress level, member section, length of bar, rise-span ratio, obliquity were analyzed. And the effect of material nonlinearity on the stability was studied. Results show that the ultimate bearing capacity of the SLICS is improved as the introduction of prestress. However the prestress level has a limited impact on the ultimate bearing capacity. And the material nonlinear is very important to the stability of the SLICS.


1972 ◽  
Vol 71 (2) ◽  
pp. 556-568 ◽  
Author(s):  
O Dumitrescu ◽  
H Kümmel

Sign in / Sign up

Export Citation Format

Share Document