phase coupling
Recently Published Documents


TOTAL DOCUMENTS

371
(FIVE YEARS 77)

H-INDEX

33
(FIVE YEARS 3)

2022 ◽  
Vol 74 ◽  
pp. 103492
Author(s):  
Bhavya Vasudeva ◽  
Runfeng Tian ◽  
Dee H. Wu ◽  
Shirley A. James ◽  
Hazem H. Refai ◽  
...  

2021 ◽  
Vol 17 (11) ◽  
pp. e1009601
Author(s):  
Natalie Klein ◽  
Joshua H. Siegle ◽  
Tobias Teichert ◽  
Robert E. Kass

Because local field potentials (LFPs) arise from multiple sources in different spatial locations, they do not easily reveal coordinated activity across neural populations on a trial-to-trial basis. As we show here, however, once disparate source signals are decoupled, their trial-to-trial fluctuations become more accessible, and cross-population correlations become more apparent. To decouple sources we introduce a general framework for estimation of current source densities (CSDs). In this framework, the set of LFPs result from noise being added to the transform of the CSD by a biophysical forward model, while the CSD is considered to be the sum of a zero-mean, stationary, spatiotemporal Gaussian process, having fast and slow components, and a mean function, which is the sum of multiple time-varying functions distributed across space, each varying across trials. We derived biophysical forward models relevant to the data we analyzed. In simulation studies this approach improved identification of source signals compared to existing CSD estimation methods. Using data recorded from primate auditory cortex, we analyzed trial-to-trial fluctuations in both steady-state and task-evoked signals. We found cortical layer-specific phase coupling between two probes and showed that the same analysis applied directly to LFPs did not recover these patterns. We also found task-evoked CSDs to be correlated across probes, at specific cortical depths. Using data from Neuropixels probes in mouse visual areas, we again found evidence for depth-specific phase coupling of primary visual cortex and lateromedial area based on the CSDs.


2021 ◽  
Author(s):  
Dragan S. Mihic ◽  
Bogdan M. Brkovic ◽  
Terzic V. Mladen ◽  
Zarko V. Koprivica
Keyword(s):  

2021 ◽  
Vol 15 ◽  
Author(s):  
Umang Garg ◽  
Kezhou Yang ◽  
Abhronil Sengupta

Astrocytes play a central role in inducing concerted phase synchronized neural-wave patterns inside the brain. In this article, we demonstrate that injected radio-frequency signal in underlying heavy metal layer of spin-orbit torque oscillator neurons mimic the neuron phase synchronization effect realized by glial cells. Potential application of such phase coupling effects is illustrated in the context of a temporal “binding problem.” We also present the design of a coupled neuron-synapse-astrocyte network enabled by compact neuromimetic devices by combining the concepts of local spike-timing dependent plasticity and astrocyte induced neural phase synchrony.


2021 ◽  
Author(s):  
Mojtaba Lahijanian ◽  
Hamid Aghajan ◽  
Zahra Vahabi ◽  
Arshia Afzal

AbstractNon-invasive gamma entrainment has shown promising results in alleviating cognitive symptoms of Alzheimer’s disease in mice and humans. In this study, we examine improvements in the synchronization characteristics of the brain’s oscillations induced by 40Hz auditory stimulation based on electroencephalography data recorded from a group of dementia patients. We observed that when the quality of entrainment surpasses a certain level, several indicators of brain synchronization significantly improve. Specifically, the entrained oscillatory activity maintains temporal phase stability in the frontal, parietal, and occipital regions, and persistent spatial phase coupling between them. In addition, notable theta-gamma phase-amplitude coupling is observed in these areas. Interestingly, a high theta power at rest predicts the quality of entrainment. We identify differentiating attributes of temporal/spatial synchronization and cross-frequency coupling in the data of two groups with entrained and non-entrained responses which point to enhanced network synchronization caused by entrainment and can explain its potential therapeutic effects.


2021 ◽  
Vol 26 (3) ◽  
pp. 60
Author(s):  
Ahmad Abushaikha ◽  
Dominique Guérillot ◽  
Mostafa Kadiri ◽  
Saber Trabelsi

This paper is dedicated to the modeling, analysis, and numerical simulation of a two-phase non-Darcian flow through a porous medium with phase-coupling. Specifically, we introduce an extended Forchheimer–Darcy model where the interaction between phases is taken into consideration. From the modeling point of view, the extension consists of the addition to each phase equation of a term depending on the gradient of the pressure of the other phase, leading to a coupled system of differential equations. The obtained system is much more involved than the classical Darcy system since it involves the Forchheimer equation in addition to the Darcy one. This model is more appropriate when there is a substantial difference between the phases’ velocities, for instance in the case of gas/water phases, and applications in oil recovery using gas flooding. Based on the Buckley–Leverett theory, including capillary pressure, we derive an explicit expression of the phases’ velocities and fractional water flows in terms of the gradient of the capillary pressure, and the total constant velocity. Various scenarios are considered, and the respective numerical simulations are presented. In particular, comparisons with the classical models (without phase coupling) are provided in terms of breakthrough time among others. Eventually, we provide a post-processing method for the derivation of the solution of the new coupled system using the classical non-coupled system. This method is of interest for industry since it allows for including the phase coupling approach in existing numerical codes and software (designed for solving classical models) without major technical changes.


Biology ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 692
Author(s):  
Víctor J. López-Madrona ◽  
Santiago Canals

Theta oscillations organize neuronal firing in the hippocampus during context exploration and memory formation. Recently, we have shown that multiple theta rhythms coexist in the hippocampus, reflecting the activity in their afferent regions in CA3 (Schaffer collaterals) and the entorhinal cortex layers II (EC-II, perforant pathway) and III (EC-III, temporoammonic pathway). Frequency and phase coupling between theta rhythms were modulated by the behavioral state, with synchronized theta rhythmicity preferentially occurring in tasks involving memory updating. However, information transmission between theta generators was not investigated. Here, we used source separation techniques to disentangle the current generators recorded in the hippocampus of rats exploring a known environment with or without a novel stimulus. We applied analytical tools based on Granger causality and transfer entropy to investigate linear and non-linear directed interactions, respectively, between the theta activities. Exploration in the novelty condition was associated with increased theta power in the generators with EC origin. We found a significant directed interaction from the Schaffer input over the EC-III input in CA1, and a bidirectional interaction between the inputs in the hippocampus originating in the EC, likely reflecting the connection between layers II and III. During novelty exploration, the influence of the EC-II over the EC-III generator increased, while the Schaffer influence decreased. These results associate the increase in hippocampal theta activity and synchrony during novelty exploration with an increase in the directed functional connectivity from EC-II to EC-III.


2021 ◽  
Author(s):  
Dian Lu ◽  
Emmanuel Stamatakis ◽  
Shruti Naik ◽  
David Menon

Abstract Brain activity is intrinsically organised into spatiotemporal patterns, but it is still not clear whether the intrinsic dynamical patterns are functional or epiphenomenal. Using a simultaneous fMRI-EEG implementation of a well-known bi-stable visual task, we showed that the latent transient states (~100-ms) in the intrinsic EEG oscillations can predict the upcoming involuntarily perceptual transitions. The critical state predicting a dominant perceptual transition was characterised by the phase coupling between the precuneus (PCU), a key node of the Default Mode Network (DMN), and the primary visual cortex (V1). The interaction between the lifetime of this state and the PCU->V1 causal effect is correlated with the rate of perceptual fluctuation. Our study suggests that the brain’s endogenous dynamics are phenomenologically relevant, as they can trigger a diversion between potential visual processing pathways, while external stimuli remain the same. In this sense, the intrinsic DMN dynamics pre-empt the content of consciousness.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mingming Zhang ◽  
Jiangtian Yang ◽  
Zhang Zhang

The motor current signature analysis (MCSA) provides a nondestructive method for gear fault detection. The motor current in the faulty gear system not only involves the frequency information related to the fault but also the electric supply frequency and gear meshing-related frequency, which not only contaminates the fault characteristics but also increases the difficulty of fault extraction. To extract the fault characteristic frequency effectively, an innovative method based on the wavelet bispectrum (WB) is proposed. Bispectrum is an effective tool for identifying the fault-related quadratic phase coupling (QPC). However, it requires a large amount of data averaging, which is not suitable for short data analysis. In this paper, the wavelet bispectrum is introduced to motor current analysis and the problem of QPC extraction under variable speed conditions is preliminarily solved. Furthermore, a fault diagnostic approach for locomotive gears using the wavelet bispectrum and wavelet bispectral entropy is suggested. The presented method was effectively applied to the locomotive online running operations, and faults of the drive gear were successfully diagnosed.


2021 ◽  
Vol 33 (7) ◽  
pp. 073308
Author(s):  
Ansan Pokharel ◽  
V'yacheslav Akkerman ◽  
Ismail B. Celik ◽  
Richard L. Axelbaum ◽  
Alain Islas ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document