scholarly journals A Procedure for Computing Conduction Time Series Factors for Walls and Roofs with Large Thermal Capacity by Finite Difference Method

2018 ◽  
Vol 38 (5) ◽  
pp. 27-36
Author(s):  
Ki-Hong Byun
Author(s):  
Marcin Kamiński ◽  
Rafał Leszek Ossowski

The main aim of this work is to demonstrate the new stochastic discrete computational methodology consisting of the generalized stochastic perturbation technique and of the classical Finite Difference Method for the regular grids to model reaction-diffusion problems with random time series. The generalized stochastic perturbation approach is based on the given order Taylor expansion of all random variables. A numerical algorithm is implemented here using the Direct Differentiation Method of the reaction-diffusion equation with respect to the height of a channel in 1D problem; further symbolic determination of the probabilistic moments and characteristics is completed by the computer algebra system MAPLE, v. 14. Computational illustration attached proves that it is possible to determine using this approach up to the fourth order probabilistic moments and coefficients as well as to consider time series with random coefficients for any dispersion of the input variables. Stochastic fluctuations of the input uncertainty source are defined here as the power time series with Gaussian random coefficients having given first two moments.


Author(s):  
Lucas Peixoto ◽  
Ane Lis Marocki ◽  
Celso Vieira Junior ◽  
Viviana Mariani

1991 ◽  
Vol 23 (1-3) ◽  
pp. 517-524
Author(s):  
M. Kanoh ◽  
T. Kuroki ◽  
K. Fujino ◽  
T. Ueda

The purpose of the paper is to apply two methods to groundwater pollution in porous media. The methods are the weighted finite difference method and the boundary element method, which were proposed or developed by Kanoh et al. (1986,1988) for advective diffusion problems. Numerical modeling of groundwater pollution is also investigated in this paper. By subdividing the domain into subdomains, the nonlinearity is localized to a small region. Computational time for groundwater pollution problems can be saved by the boundary element method; accurate numerical results can be obtained by the weighted finite difference method. The computational solutions to the problem of seawater intrusion into coastal aquifers are compared with experimental results.


Sign in / Sign up

Export Citation Format

Share Document