scholarly journals ESTIMATION OF THE WAVE POWER POTENTIAL IN COASTAL REGIONS OF FLORIDA

Author(s):  
Cigdem Ozkan ◽  
Talea L. Mayo

The state of Florida has an abundance of renewable energy resources. Florida sees sun in an average 60% of its available daylight hours, and has 8,436 miles of coastline, and thus solar and wave energy are two promising alternatives to more conventional energy sources. The Electric Power Research Institute estimates the wave power potential along the Gulf of Mexico coast and East coast of the United States as 60 TWh/year and 160 TWh/year, respectively. One TWh/year can power approximately 93,850 US homes annually, and thus it is likely that ocean wave energy has the potential to greatly contribute to the overall energy supply. This can be acheived by harnessing and converting wave energy into electricity using wave energy conversion devices. However, the feasibility of wave energy conversion must be assessed before such technologies can be employed. As a first step, the amount of available wave power in regions where devices may be deployed should be estimated. In this study, we assess the wave power potential of Florida’s nearshore coastal regions.

2011 ◽  
Vol 33 (2) ◽  
pp. 110-119 ◽  
Author(s):  
S.G. Siegel ◽  
T. Jeans ◽  
T.E. McLaughlin

Author(s):  
Brian Stiber ◽  
Asfaw Beyene

Climate change, drought, population growth and increased energy and water costs are all forces driving exploration into alternative, sustainable resources. The abundance of untapped wave energy often presents an opportunity for research into exploiting this resource to meet the energy and water needs of populated coastal regions. This paper investigates the potential and impact of harnessing wave energy for the purpose of seawater desalination. First the SWAN wave modeling software was used to evaluate the size and character of the wave resource. These data are used to estimate the cost of water for wave-powered desalination taking a specific region as a case example. The results indicate that, although the cost of water from this technology is not economically competitive at this time, the large available resource confirms the viability of significantly supplementing current freshwater supplies. The results also confirm that research into the feasibility of wave power as a source of energy and water in the area is warranted, particularly as water and energy become more scarce and expensive coinciding with the maturity of commercial wave energy conversion.


Sign in / Sign up

Export Citation Format

Share Document