Wave-Powered Desalination

Author(s):  
Brian Stiber ◽  
Asfaw Beyene

Climate change, drought, population growth and increased energy and water costs are all forces driving exploration into alternative, sustainable resources. The abundance of untapped wave energy often presents an opportunity for research into exploiting this resource to meet the energy and water needs of populated coastal regions. This paper investigates the potential and impact of harnessing wave energy for the purpose of seawater desalination. First the SWAN wave modeling software was used to evaluate the size and character of the wave resource. These data are used to estimate the cost of water for wave-powered desalination taking a specific region as a case example. The results indicate that, although the cost of water from this technology is not economically competitive at this time, the large available resource confirms the viability of significantly supplementing current freshwater supplies. The results also confirm that research into the feasibility of wave power as a source of energy and water in the area is warranted, particularly as water and energy become more scarce and expensive coinciding with the maturity of commercial wave energy conversion.

Author(s):  
Cigdem Ozkan ◽  
Talea L. Mayo

The state of Florida has an abundance of renewable energy resources. Florida sees sun in an average 60% of its available daylight hours, and has 8,436 miles of coastline, and thus solar and wave energy are two promising alternatives to more conventional energy sources. The Electric Power Research Institute estimates the wave power potential along the Gulf of Mexico coast and East coast of the United States as 60 TWh/year and 160 TWh/year, respectively. One TWh/year can power approximately 93,850 US homes annually, and thus it is likely that ocean wave energy has the potential to greatly contribute to the overall energy supply. This can be acheived by harnessing and converting wave energy into electricity using wave energy conversion devices. However, the feasibility of wave energy conversion must be assessed before such technologies can be employed. As a first step, the amount of available wave power in regions where devices may be deployed should be estimated. In this study, we assess the wave power potential of Florida’s nearshore coastal regions.


Author(s):  
Yi-Hsiang Yu ◽  
Ye Li ◽  
Kathleen Hallett ◽  
Chad Hotimsky

This paper presents a recent study on the design and analysis of an oscillating surge wave energy converter (OSWEC). A successful wave energy conversion design requires balance between the design performance and cost. The cost of energy is often used as the metric to judge the design of the wave energy conversion (WEC) system, which is often determined based on the device’s power performance; the cost of manufacturing, deployment, operation, and maintenance; and environmental compliance. The objective of this study is to demonstrate the importance of a cost-driven design strategy and how it can affect a WEC design. A set of three oscillating surge wave energy converter designs was analyzed and used as examples. The power generation performance of the design was modeled using a time-domain numerical simulation tool, and the mass properties of the design were determined based on a simple structure analysis. The results of those power performance simulations, the structure analysis, and a simple economic assessment were then used to determine the cost-efficiency of selected OSWEC designs. Finally, we present a discussion on the environmental barrier, integrated design strategy, and the key areas that need further investigation.


2015 ◽  
Vol 773-774 ◽  
pp. 460-464 ◽  
Author(s):  
M.D. Lafsah ◽  
Mohd Zamri Ibrahim ◽  
Aliashim Albani

The wave energy is one of promising resource for generating electricity in this country. A wave energy conversion system was designed and fabricated; the prototype was tested and its performance was analyzed. The invention herein proposed a system operated by wave resource. This configuration allows the wave resource working to generate electricity. Wave power device operated by the movement of floaters with varying speed connected to the mechanical racks. These mechanical racks move gears and pulleys, which giving forces to the pulley’s belts to rotate. This pulley’s belts connected to the electric generator that produces the electricity. The final system was tested in the coastal area near to Universiti Malaysia Terengganu (UMT) campus. The measurement results clearly show that the available wave resource could be harness into useful work for electric power generation.


2010 ◽  
Vol 6 (2) ◽  
pp. 105-115
Author(s):  
P.P. Sajimon

Climate change and disasters are fast emerging as the most significant challenges of the 21st century as global risks with impacts far beyond just the environment and implications on national security and development. As the world continues its contemporary patterns of production and consumption, the future is at immense risk. Climate Change has the potential to alter the ability of the earth’s physical and biological systems to provide goods and services essential for sustainable development. Today, a number of mainstream population and environment groups are claiming that population growth is a major cause of climate change and that lesser birth rates are the solution. If we cannot stabilize population, there is not an ecosystem on earth that we can save. If developing countries cannot stabilize their populations almost immediately, many of them face the disintegration of ecosystem. But in reality, even if we could today achieve zero population growth that would barely touch the climate problem — where we need to cut emissions by 50 to 80 percent by mid-century. Given existing income inequalities, it is inescapable that over consumption by the rich few is the key problem, rather than overpopulation of the poor many. In the absence of any commitment in the next two decades, their economies would become locked into a trajectory of elevated emissions and unsustainable development, while the cost of reversing the trend will become prohibitively high. This paper examines several outstanding issues on the interface between population and environment. Significantly, the study would come out with some policy recommendations to the policy makers.


2012 ◽  
Vol 1 (33) ◽  
pp. 2 ◽  
Author(s):  
Ivan Lopez ◽  
Gregorio Iglesias ◽  
Mario Lopez ◽  
Francisco Castro ◽  
Miguel Ángel Rodríguez

Oscillating Water Column (OWC) systems are one of the most popular technologies for wave energy conversion. Their main elements are the chamber with the water column and the air turbine. When studying the performance of an OWC system both elements should be considered together, for they are effectively coupled: the damping exerted by the air turbine affects the efficiency of the conversion from wave power to pneumatic power in the OWC chamber, which in turn affects the air flow driving the turbine. The optimum level of damping is that which maximizes the efficiency of the conversion from wave to pneumatic power. In this work the turbine-chamber coupling is studied through a combination of physical and numerical modeling.


Author(s):  
Manabu Takao ◽  
Eiji Sato ◽  
Shuichi Nagata ◽  
Kazutaka Toyota ◽  
Toshiaki Setoguchi

A sea trial of wave power plant using an impulse turbine with coreless generator has been carried out at Niigata-nishi Port, in order to demonstrate usefulness of the turbine for wave energy conversion. Oscillating water column (OWC) based wave power plant has been installed at the side of a breakwater and has an air chamber with a sectional area of 4 m2 (= 2m × 2m). The impulse turbine used in the sea trial has fixed guide vanes both upstream and downstream, and these geometries are symmetrical with respect to the rotor centerline in order to rotate in a single direction in bi-directional airflow generated by OWC. The turbine is operated at lower rotational speed in comparison with conventional turbines. The rotor has a tip diameter of 458 mm, a hub-to-tip ratio of 0.7, a tip clearance of 1 mm, a chord length of 82.8 mm and a solidity of 2.0. The guide vane with chord length of 107.4 mm is symmetrically installed at the distance of 30.7 mm downstream and upstream of the rotor. The guide vane has a solidity of 2.27, a thickness ratio of 0.0279, a guide vane setting angle of 30° and a camber angle of 60°. The generator is coreless type and can generate electricity at lower rotational speed in comparison with conventional generator. The rated and maximum powers of the generator are 450 W and 880 W respectively. The experimental data obtained in the sea trial of wave power plant with the impulse turbine having coreless generator was compared to these of Wells turbine which is the mainstream of the turbine for wave energy conversion. As a result, total efficiency of the plant using the impulse turbine was higher than that of Wells turbine.


1984 ◽  
Vol 1 (19) ◽  
pp. 171
Author(s):  
G. De F. Retief ◽  
F.P.J. Muller ◽  
G.K. Prestedge ◽  
L.C. Geustyn ◽  
D.H. Swart

A preliminary assessment of wave energy conversion by means of the Stellenbosch Wave Energy Converter (SWEC) has indicated the viability of this system as a supplementary source of electric power. In order to refine the preliminary estimates of the cost of power delivered, detailed design of a 770 MW (rated output) installation at a site 60 km north of Cape Town has been undertaken. This paper describes the power conversion characteristics of the SWEC at the proposed site, structural design of the collector arms and generating tower for both mass gravity or piled solutions, a construction scenario involving a casting harbour in nearby Saldanha Bay and the towing and placement of 53 m long precast modules, and finally an assessment of the environmental impact of the proposed 40 km array on the adjacent coastline. The proposed system is found to be both technically and economically feasible and offers a useful contribution towards future electric power supply.


Sign in / Sign up

Export Citation Format

Share Document