collaborative robust optimization
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

2008 ◽  
Vol 130 (8) ◽  
Author(s):  
M. Li ◽  
S. Azarm

We present a new solution approach for multidisciplinary design optimization (MDO) problems that, for the first time in literature, has all of the following characteristics: Each discipline has multiple objectives and constraints with mixed continuous-discrete variables; uncertainty exists in parameters and as a result, uncertainty propagation exists within and across disciplines; probability distributions of uncertain parameters are not available but their interval of uncertainty is known; and disciplines can be fully (two-way) coupled. The proposed multiobjective collaborative robust optimization (McRO) approach uses a multiobjective genetic algorithm as an optimizer. McRO obtains solutions that are as best as possible in a multiobjective and multidisciplinary sense. Moreover, for McRO solutions, the variation of objective and/or constraint functions can be kept within an acceptable range. McRO includes a technique for interdisciplinary uncertainty propagation. The approach can be used for robust optimization of MDO problems with multiple objectives, or constraints, or both together at system and subsystem levels. Results from an application of McRO to a numerical and an engineering example are presented. It is concluded that McRO can solve fully coupled MDO problems with interval uncertainty and obtain solutions that are comparable to a single-disciplinary robust optimization approach.


Author(s):  
Mian Li ◽  
Shapour Azarm

Real-world engineering design optimization problems often involve systems that have coupled disciplines with uncontrollable variations in their parameters. No approach has yet been reported for the solution of these problems when there are multiple objectives in each discipline, mixed continuous-discrete variables, and when there is a need to account for uncertainty and also uncertainty propagation across disciplines. We present a Multiobjective collaborative Robust Optimization (McRO) approach for this class of problems that have interval uncertainty in their parameters. McRO obtains Multidisciplinary Design Optimization (MDO) solutions which are as best as possible in a multiobjective and multidisciplinary sense. For McRO solutions, the sensitivity of objective and/or constraint functions is kept within an acceptable range. McRO involves a technique for interdisciplinary uncertainty propagation. The approach can be used for robust optimization of MDO problems with multiple objectives, or constraints, or both together at system and subsystem levels. Results from an application of the approach to a numerical and an engineering example are presented. It is concluded that the McRO approach can solve fully coupled MDO problems with interval uncertainty and can obtain solutions that are comparable to an all-at-once robust optimization approach.


Sign in / Sign up

Export Citation Format

Share Document