probability inequality
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 3)

H-INDEX

6
(FIVE YEARS 0)

2021 ◽  
Vol 21 (2) ◽  
pp. 437-448
Author(s):  
NADJIA AZZEDINE ◽  
AMINA ZEBLAH ◽  
SAMIR BENAISSA

The exponential probability inequalities have been important tools in probability and statistics. In this paper, we prove a new tail probability inequality for the distri-butions of sums of conditionally linearly negative quadrant dependent (F-LNQD , in short) random variables, and obtain a result dealing with conditionally complete con-vergence of first-order autoregressive processes with identically distributed (F-LNQD) innovations.


10.37236/9638 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Dan Hu ◽  
Hajo Broersma ◽  
Jiangyou Hou ◽  
Shenggui Zhang

A mixed graph is a graph that can be obtained from a simple undirected graph by replacing some of the edges by arcs in precisely one of the two possible directions. The Hermitian adjacency matrix of a mixed graph $G$ of order $n$ is the $n \times n$ matrix $H(G)=(h_{ij})$, where $h_{ij}=-h_{ji}= \boldsymbol{\mathrm{i}}$ (with $\boldsymbol{\mathrm{i}} =\sqrt{-1})$ if there exists an arc from $v_i$ to $v_j$ (but no arc from $v_j$ to $v_i$), $h_{ij}=h_{ji}=1$ if there exists an edge (and no arcs) between $v_i$ and $v_j$, and $h_{ij}= 0$ otherwise (if $v_i$ and $v_j$ are neither joined by an edge nor by an arc). We study the spectra of the Hermitian adjacency matrix and the normalized Hermitian Laplacian matrix of general random mixed graphs, i.e., in which all arcs are chosen independently with different probabilities (and an edge is regarded as two oppositely oriented arcs joining the same pair of vertices). For our first main result, we derive a new probability inequality and apply it to obtain an upper bound on the eigenvalues of the Hermitian adjacency matrix. Our second main result shows that the eigenvalues of the normalized Hermitian Laplacian matrix can be approximated by the eigenvalues of a closely related weighted expectation matrix, with error bounds depending on the minimum expected degree of the underlying undirected graph.


Stochastics ◽  
2017 ◽  
Vol 90 (2) ◽  
pp. 214-223
Author(s):  
Deli Li ◽  
Han-Ying Liang ◽  
Andrew Rosalsky

2015 ◽  
Vol 2015 (1) ◽  
Author(s):  
Zi-zong Yan ◽  
Yue-mei Zhang

Sign in / Sign up

Export Citation Format

Share Document