probability inequalities
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 9)

H-INDEX

21
(FIVE YEARS 1)

Author(s):  
Gerardo Barrera ◽  
Paulo Manrique

AbstractIn this paper, we study how the roots of the Kac polynomials $$W_n(z) = \sum _{k=0}^{n-1} \xi _k z^k$$ W n ( z ) = ∑ k = 0 n - 1 ξ k z k concentrate around the unit circle when the coefficients of $$W_n$$ W n are independent and identically distributed nondegenerate real random variables. It is well known that the roots of a Kac polynomial concentrate around the unit circle as $$n\rightarrow \infty $$ n → ∞ if and only if $${\mathbb {E}}[\log ( 1+ |\xi _0|)]<\infty $$ E [ log ( 1 + | ξ 0 | ) ] < ∞ . Under the condition $${\mathbb {E}}[\xi ^2_0]<\infty $$ E [ ξ 0 2 ] < ∞ , we show that there exists an annulus of width $${\text {O}}(n^{-2}(\log n)^{-3})$$ O ( n - 2 ( log n ) - 3 ) around the unit circle which is free of roots with probability $$1-{\text {O}}({(\log n)^{-{1}/{2}}})$$ 1 - O ( ( log n ) - 1 / 2 ) . The proof relies on small ball probability inequalities and the least common denominator used in [17].


2021 ◽  
Vol 21 (2) ◽  
pp. 437-448
Author(s):  
NADJIA AZZEDINE ◽  
AMINA ZEBLAH ◽  
SAMIR BENAISSA

The exponential probability inequalities have been important tools in probability and statistics. In this paper, we prove a new tail probability inequality for the distri-butions of sums of conditionally linearly negative quadrant dependent (F-LNQD , in short) random variables, and obtain a result dealing with conditionally complete con-vergence of first-order autoregressive processes with identically distributed (F-LNQD) innovations.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yanjun Wang ◽  
Shisen Liu

<p style='text-indent:20px;'>This paper is concerned with the joint chance constraint for a system of linear inequalities. We discuss computationally tractble relaxations of this constraint based on various probability inequalities, including Chebyshev inequality, Petrov exponential inequalities, and others. Under the linear decision rule and additional assumptions about first and second order moments of the random vector, we establish several upper bounds for a single chance constraint. This approach is then extended to handle the joint linear constraint. It is shown that the relaxed constraints are second-order cone representable. Numerical test results are presented and the problem of how to choose proper probability inequalities is discussed.</p>


2020 ◽  
Vol 5 (3) ◽  
pp. 779-795 ◽  
Author(s):  
Apoorva Khare ◽  
Bala Rajaratnam

2019 ◽  
pp. 187-203
Author(s):  
La ei Chen ◽  
Kaiy ng Wang ◽  
Miaom ao Gao ◽  
Yi un Dong

Sign in / Sign up

Export Citation Format

Share Document