quotient modules
Recently Published Documents


TOTAL DOCUMENTS

41
(FIVE YEARS 4)

H-INDEX

8
(FIVE YEARS 0)

2022 ◽  
Vol 282 (1) ◽  
pp. 109258
Author(s):  
Monojit Bhattacharjee ◽  
B. Krishna Das ◽  
Ramlal Debnath ◽  
Jaydeb Sarkar
Keyword(s):  


2020 ◽  
Vol 36 (8) ◽  
pp. 943-960 ◽  
Author(s):  
Chang Hui Wu ◽  
Tao Yu
Keyword(s):  


2020 ◽  
Vol 278 (1) ◽  
pp. 108304
Author(s):  
Senhua Zhu ◽  
Yixin Yang ◽  
Yufeng Lu
Keyword(s):  


Author(s):  
Ulrich Oberst ◽  
Martin Scheicher ◽  
Ingrid Scheicher
Keyword(s):  


2019 ◽  
Vol 10 (4) ◽  
pp. 447-459 ◽  
Author(s):  
Yixin Yang ◽  
Senhua Zhu ◽  
Yufeng Lu
Keyword(s):  


2019 ◽  
Vol 276 (4) ◽  
pp. 1061-1096 ◽  
Author(s):  
Yi Wang ◽  
Jingbo Xia


2019 ◽  
Vol 150 (3) ◽  
pp. 1339-1359 ◽  
Author(s):  
B. Krishna Das ◽  
Sushil Gorai ◽  
Jaydeb Sarkar

AbstractLet 𝔻n be the open unit polydisc in ℂn, $n \ges 1$, and let H2(𝔻n) be the Hardy space over 𝔻n. For $n\ges 3$, we show that if θ ∈ H∞(𝔻n) is an inner function, then the n-tuple of commuting operators $(C_{z_1}, \ldots , C_{z_n})$ on the Beurling type quotient module ${\cal Q}_{\theta }$ is not essentially normal, where $${\rm {\cal Q}}_\theta = H^2({\rm {\open D}}^n)/\theta H^2({\rm {\open D}}^n)\quad {\rm and}\quad C_{z_j} = P_{{\rm {\cal Q}}_\theta }M_{z_j}\vert_{{\rm {\cal Q}}_\theta }\quad (j = 1, \ldots ,n).$$Rudin's quotient modules of H2(𝔻2) are also shown to be not essentially normal. We prove several results concerning boundary representations of C*-algebras corresponding to different classes of quotient modules including doubly commuting quotient modules and homogeneous quotient modules.



Sign in / Sign up

Export Citation Format

Share Document