quotient module
Recently Published Documents


TOTAL DOCUMENTS

8
(FIVE YEARS 2)

H-INDEX

2
(FIVE YEARS 0)

2020 ◽  
pp. 1164-1172
Author(s):  
Maysoun A. Hamel ◽  
Hatam Y. Khalaf

In this paper, we introduce and study the notions of fuzzy quotient module, fuzzy (simple, semisimple) module and fuzzy maximal submodule. Also, we give many basic properties about these notions.


2019 ◽  
Vol 150 (3) ◽  
pp. 1339-1359 ◽  
Author(s):  
B. Krishna Das ◽  
Sushil Gorai ◽  
Jaydeb Sarkar

AbstractLet 𝔻n be the open unit polydisc in ℂn, $n \ges 1$, and let H2(𝔻n) be the Hardy space over 𝔻n. For $n\ges 3$, we show that if θ ∈ H∞(𝔻n) is an inner function, then the n-tuple of commuting operators $(C_{z_1}, \ldots , C_{z_n})$ on the Beurling type quotient module ${\cal Q}_{\theta }$ is not essentially normal, where $${\rm {\cal Q}}_\theta = H^2({\rm {\open D}}^n)/\theta H^2({\rm {\open D}}^n)\quad {\rm and}\quad C_{z_j} = P_{{\rm {\cal Q}}_\theta }M_{z_j}\vert_{{\rm {\cal Q}}_\theta }\quad (j = 1, \ldots ,n).$$Rudin's quotient modules of H2(𝔻2) are also shown to be not essentially normal. We prove several results concerning boundary representations of C*-algebras corresponding to different classes of quotient modules including doubly commuting quotient modules and homogeneous quotient modules.


2012 ◽  
Vol 4 (2) ◽  
pp. 279
Author(s):  
Ari Wardayani

We prove that ℝ2 is module over Gaussian Intergers and the set of all coset of submodule  in module ℝ2 over Gaussian Integers is a quotient module. We find the proof by showing that ℝ2 is both a right module and a left module over Gaussian Integers and showing that the set of all coset of submodule  in module ℝ2 is both a right module and a left module over Gaussian Integers.


2012 ◽  
Vol 20 (3) ◽  
pp. 205-214 ◽  
Author(s):  
Yuichi Futa ◽  
Hiroyuki Okazaki ◽  
Yasunari Shidama

Summary In this article we formalize a quotient module of Z-module and a vector space constructed by the quotient module. We formally prove that for a Z-module V and a prime number p, a quotient module V/pV has the structure of a vector space over Fp. Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz) base reduction algorithm and cryptographic systems with lattices [14]. Some theorems in this article are described by translating theorems in [20] and [19] into theorems of Z-module.


1988 ◽  
Vol 30 (2) ◽  
pp. 215-220 ◽  
Author(s):  
José L. Gómez Pardo ◽  
Nieves Rodríguez González

A ring R is called left QF-3 if it has a minimal faithful left R-module. The endomorphism ring of such a module has been recently studied in [7], where conditions are given for it to be a left PF ring or a QF ring. The object of the present paper is to study, more generally, when the endomorphism ring of a Σ-quasi-projective module over any ring R is left QF-3. Necessary and sufficient conditions for this to happen are given in Theorem 2. An useful concept in this investigation is that of a QF-3 module which has been introduced in [11]. If M is a finitely generated quasi-projective module and σ[M] denotes the category of all modules isomorphic to submodules of modules generated by M, then we show that End(RM) is a left QF-3 ring if and only if the quotient module of M modulo its torsion submodule (in the torsion theory of σ[M] canonically defined by M) is a QF-3 module (Corollary 4). Finally, we apply these results to the study of the endomorphism ring of a minimal faithful R-module over a left QF-3 ring, extending some of the results of [7].


1971 ◽  
Vol 154 ◽  
pp. 315-315 ◽  
Author(s):  
C. N. Winton
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document