fractal interpolation
Recently Published Documents


TOTAL DOCUMENTS

393
(FIVE YEARS 104)

H-INDEX

27
(FIVE YEARS 3)

2021 ◽  
Vol 5 (4) ◽  
pp. 185
Author(s):  
Kshitij Kumar Pandey ◽  
Puthan Veedu Viswanathan

There has been a considerable evolution of the theory of fractal interpolation function (FIF) over the last three decades. Recently, we introduced a multivariate analogue of a special class of FIFs, which is referred to as α-fractal functions, from the viewpoint of approximation theory. In the current note, we continue our study on multivariate α-fractal functions, but in the context of a few complete function spaces. For a class of fractal functions defined on a hyperrectangle Ω in the Euclidean space Rn, we derive conditions on the defining parameters so that the fractal functions are elements of some standard function spaces such as the Lebesgue spaces Lp(Ω), Sobolev spaces Wm,p(Ω), and Hölder spaces Cm,σ(Ω), which are Banach spaces. As a simple consequence, for some special choices of the parameters, we provide bounds for the Hausdorff dimension of the graph of the corresponding multivariate α-fractal function. We shall also hint at an associated notion of fractal operator that maps each multivariate function in one of these function spaces to its fractal counterpart. The latter part of this note establishes that the Riemann–Liouville fractional integral of a continuous multivariate α-fractal function is a fractal function of similar kind.


2021 ◽  
Vol 5 (4) ◽  
pp. 157
Author(s):  
Arulprakash Gowrisankar ◽  
Alireza Khalili Golmankhaneh ◽  
Cristina Serpa

In this paper, fractal calculus, which is called Fα-calculus, is reviewed. Fractal calculus is implemented on fractal interpolation functions and Weierstrass functions, which may be non-differentiable and non-integrable in the sense of ordinary calculus. Graphical representations of fractal calculus of fractal interpolation functions and Weierstrass functions are presented.


Sign in / Sign up

Export Citation Format

Share Document