interpolation functions
Recently Published Documents


TOTAL DOCUMENTS

311
(FIVE YEARS 58)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 5 (4) ◽  
pp. 157
Author(s):  
Arulprakash Gowrisankar ◽  
Alireza Khalili Golmankhaneh ◽  
Cristina Serpa

In this paper, fractal calculus, which is called Fα-calculus, is reviewed. Fractal calculus is implemented on fractal interpolation functions and Weierstrass functions, which may be non-differentiable and non-integrable in the sense of ordinary calculus. Graphical representations of fractal calculus of fractal interpolation functions and Weierstrass functions are presented.


Author(s):  
G. Ferrara ◽  
C. Parente

Abstract. The knowledge of the geoid undulation, the height of the geoid relative to a given ellipsoid of reference, is fundamental to transform the ellipsoidal heights into orthometric heights. Global geoid undulation models developed from satellite gravity measurements appropriately integrated with other data, are free accessible in internet, but their accuracy may be inadequate for specific applications. Earth Gravitational Model 2008 (EGM2008) is one of those: usually available in grid form 2.5’ × 2.5’ (a geotif is developed by Agisoft with resolution 1’ × 1’), it defines the difference between the WGS84 ellipsoid height and the mean sea level, but in some areas the discrepancies between these geoid undulations and local correspondent measured values are on the order of various decimetres. For consequence, more accurate models are necessary. This article aims to determine a geoid undulation model suitable for Campania Region (Italy), starting from the global model EGM2008 (1’ × 1’) that is locally adjusted by using geodetic network points (GNPs) and GIS interpolation functions. Three different datasets are considered including respectively 20, 40 and 60 GNPs and three deterministic interpolators are applied in global way to generate geoid undulation grids: Inverse Distance Weight (IDW), Global Polynomial 1st order (GP1), Global Polynomial 2nd order (GP2). The resultant 9 models are tested on 20 additional GNPs. The experiments demonstrate that local geoid can be produced on a little area adapting global geoid by means of GNPs: the model obtained using GP2 and 60 GNPs, the most accurate one, fits the data with ±3.2 cm root mean square error (RMSE).


2021 ◽  
Vol 11 (17) ◽  
pp. 8261
Author(s):  
Petru Cardei ◽  
Florin Nenciu ◽  
Nicoleta Ungureanu ◽  
Mirabela Augustina Pruteanu ◽  
Valentin Vlăduț ◽  
...  

The aim of the study was to identify new mathematical models and strategies that can characterize the behavior of pollutants accumulating in the soil over time, considering the special characteristics of these chemicals that cannot be degraded or destroyed easily. The paper proposes a statistical model for assessing the accumulation of Zn in the lettuce (Lactuca sativa L.), based on three indicators that characterize the development of lettuce plants over time. The experimental data can be used to obtain interpolated variations of the mass increase functions and to determine several functions that express the time dependence of heavy metal accumulation in the plant. The resulting interpolation functions have multiple applications, being useful in generating predictions for plant growth parameters when they are grown in contaminated environments, determining whether pollutant concentrations may be hazardous for human health, and may be used to verify and validate dynamic mathematical contamination models.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1744
Author(s):  
Abdelmejid Bayad ◽  
Yilmaz Simsek

The main purpose of this paper is to use the multiple twisted Bernoulli polynomials and their interpolation functions to construct multiple twisted Dedekind type sums. We investigate some properties of these sums. By use of the properties of multiple twisted zeta functions and the Bernoulli functions involving the Bernoulli polynomials, we derive reciprocity laws of these sums. Further developments and observations on these new Dedekind type sums are given.


2021 ◽  
pp. 1-17
Author(s):  
Shan Zhao ◽  
Zhao Li

The interpolation functions of interval type-2 fuzzy systems and their universal approximation are investigated in this paper. Two types of fuzzification methods are designed to construct the antecedents and consequents of the type-2 inference rules. Then the properties of the fuzzy operator and the type-reduction algorithm are used to integrate all parts of the fuzzy system. Interpolation functions of interval type-2 fuzzy systems, which are proved to be universal approximators, are obtained based on three models, namely single input and single output, double inputs and single output, and multiple inputs and single output. The proposed approach is applied to approximate experiments of dynamic systems so as to evaluate the system performance. The system parameters are optimized by the QPSO algorithm. Experimental results for several data sets are given to show the approximation performances of the proposed interpolation functions are better than those of the interpolation function of the classical type-1 fuzzy system.


2021 ◽  
Vol 66 (2) ◽  
pp. 247-255
Author(s):  
Ildiko Somogyi ◽  
Anna Soos

"Barnsley introduced in [1] the notion of fractal interpolation function (FIF). He said that a fractal function is a (FIF) if it possess some interpolation properties. It has the advantage that it can be also combined with the classical methods or real data interpolation. Hutchinson and Ruschendorf [7] gave the stochastic version of fractal interpolation function. In order to obtain fractal interpolation functions with more exibility, Wang and Yu [9] used instead of a constant scaling parameter a variable vertical scaling factor. Also the notion of fractal interpolation can be generalized to the graph-directed case introduced by Deniz and  Ozdemir in [5]. In this paper we study the case of a stochastic fractal interpolation function with graph-directed fractal function."


Sign in / Sign up

Export Citation Format

Share Document