circuit simulations
Recently Published Documents


TOTAL DOCUMENTS

172
(FIVE YEARS 31)

H-INDEX

16
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Lizhou Wu ◽  
Siddharth Rao ◽  
Mottaqiallah Taouil ◽  
Erik Jan Marinissen ◽  
Said Hamdioui ◽  
...  

<div>The manufacturing process of STT-MRAM requires unique steps to fabricate and integrate magnetic tunnel junction (MTJ) devices which are data-storing elements. Thus, understanding the defects in MTJs and their faulty behaviors are paramount for developing high-quality test solutions. This article applies the advanced device-aware test to intermediate (IM) state defects in MTJ devices based on silicon measurements and circuit simulations. An IM state manifests itself as an abnormal third resistive state, which differs from the two bi-stable states of MTJ. We performed silicon measurements on MTJ devices with diameter ranging from 60nm to 120nm; the results show that the occurrence probability of IM state strongly depends on the switching direction, device size, and bias voltage. We demonstrate that the conventional resistor- based fault modeling and test approach fails to appropriately model and test such a defect. Therefore, device-aware test is applied. We first physically model the defect and incorporate it into a Verilog-A MTJ compact model and calibrate it with silicon data. Thereafter, this model is used for a systematic fault analysis based on circuit simulations to obtain accurate and realistic faults in a pre-defined fault space. Our simulation results show that an IM state defect leads to intermittent write transition faults. Finally, we propose and implement a device-aware test solution to detect the IM state defect.</div>


2021 ◽  
Author(s):  
Lizhou Wu ◽  
Siddharth Rao ◽  
Mottaqiallah Taouil ◽  
Erik Jan Marinissen ◽  
Said Hamdioui ◽  
...  

<div>The manufacturing process of STT-MRAM requires unique steps to fabricate and integrate magnetic tunnel junction (MTJ) devices which are data-storing elements. Thus, understanding the defects in MTJs and their faulty behaviors are paramount for developing high-quality test solutions. This article applies the advanced device-aware test to intermediate (IM) state defects in MTJ devices based on silicon measurements and circuit simulations. An IM state manifests itself as an abnormal third resistive state, which differs from the two bi-stable states of MTJ. We performed silicon measurements on MTJ devices with diameter ranging from 60nm to 120nm; the results show that the occurrence probability of IM state strongly depends on the switching direction, device size, and bias voltage. We demonstrate that the conventional resistor- based fault modeling and test approach fails to appropriately model and test such a defect. Therefore, device-aware test is applied. We first physically model the defect and incorporate it into a Verilog-A MTJ compact model and calibrate it with silicon data. Thereafter, this model is used for a systematic fault analysis based on circuit simulations to obtain accurate and realistic faults in a pre-defined fault space. Our simulation results show that an IM state defect leads to intermittent write transition faults. Finally, we propose and implement a device-aware test solution to detect the IM state defect.</div>


2021 ◽  
Author(s):  
Lizhou Wu ◽  
Siddharth Rao ◽  
Mottaqiallah Taouil ◽  
Erik Jan Marinissen ◽  
Said Hamdioui ◽  
...  

<div>The manufacturing process of STT-MRAM requires unique steps to fabricate and integrate magnetic tunnel junction (MTJ) devices which are data-storing elements. Thus, understanding the defects in MTJs and their faulty behaviors are paramount for developing high-quality test solutions. This article applies the advanced device-aware test to intermediate (IM) state defects in MTJ devices based on silicon measurements and circuit simulations. An IM state manifests itself as an abnormal third resistive state, which differs from the two bi-stable states of MTJ. We performed silicon measurements on MTJ devices with diameter ranging from 60nm to 120nm; the results show that the occurrence probability of IM state strongly depends on the switching direction, device size, and bias voltage. We demonstrate that the conventional resistor- based fault modeling and test approach fails to appropriately model and test such a defect. Therefore, device-aware test is applied. We first physically model the defect and incorporate it into a Verilog-A MTJ compact model and calibrate it with silicon data. Thereafter, this model is used for a systematic fault analysis based on circuit simulations to obtain accurate and realistic faults in a pre-defined fault space. Our simulation results show that an IM state defect leads to intermittent write transition faults. Finally, we propose and implement a device-aware test solution to detect the IM state defect.</div>


Author(s):  
Xuhui Chen ◽  
Feilong Ding ◽  
Xiaoqing Huang ◽  
Xinnan Lin ◽  
Runsheng Wang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Birong Xu ◽  
Hairong Lin ◽  
Guangyi Wang

In this paper, we report a novel memristor-based cellular neural network (CNN) without equilibrium points. Dynamical behaviors of the memristor-based CNN are investigated by simulation analysis. The results indicate that the system owns complicated nonlinear phenomena, such as hidden attractors, coexisting attractors, and initial boosting behaviors of position and amplitude. Furthermore, both heterogeneous multistability and homogenous multistability are found in the CNN. Finally, Multisim circuit simulations are performed to prove the chaotic characteristics and multistability of the system.


Sign in / Sign up

Export Citation Format

Share Document