shared variable
Recently Published Documents


TOTAL DOCUMENTS

78
(FIVE YEARS 5)

H-INDEX

9
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Allan Tabilog

<p>This thesis explores two kinds of program logics that have become important for modern program verification - separation logic, for reasoning about programs that use pointers to build mutable data structures, and rely guarantee reasoning, for reasoning about shared variable concurrent programs. We look more closely into the motivations for merging these two kinds of logics into a single formalism that exploits the benefits of both approaches - local, modular, and explicit reasoning about interference between threads in a shared memory concurrent program. We discuss in detail two such formalisms - RGSep and Local Rely Guarantee (LRG), in particular we analyse how each formalism models program state and treats the distinction between global state (shared by all threads) and local state (private to a given thread) and how each logic models actions performed by threads on shared state, and look into the proof rules specifically for reasoning about atomic blocks of code. We present full examples of proofs in each logic and discuss their differences. This thesis also illustrates how a weakest precondition semantics for separation logic can be used to carry out calculational proofs. We also note how in essence these proofs are data abstraction proofs showing that a data structure implements some abstract data type, and relate this idea to a classic data abstraction technique by Hoare. Finally, as part of the thesis we also present a survey of tools that are currently available for doing manual or semi-automated proofs as well as program analyses with separation logic and rely guarantee.</p>


2021 ◽  
Author(s):  
◽  
Allan Tabilog

<p>This thesis explores two kinds of program logics that have become important for modern program verification - separation logic, for reasoning about programs that use pointers to build mutable data structures, and rely guarantee reasoning, for reasoning about shared variable concurrent programs. We look more closely into the motivations for merging these two kinds of logics into a single formalism that exploits the benefits of both approaches - local, modular, and explicit reasoning about interference between threads in a shared memory concurrent program. We discuss in detail two such formalisms - RGSep and Local Rely Guarantee (LRG), in particular we analyse how each formalism models program state and treats the distinction between global state (shared by all threads) and local state (private to a given thread) and how each logic models actions performed by threads on shared state, and look into the proof rules specifically for reasoning about atomic blocks of code. We present full examples of proofs in each logic and discuss their differences. This thesis also illustrates how a weakest precondition semantics for separation logic can be used to carry out calculational proofs. We also note how in essence these proofs are data abstraction proofs showing that a data structure implements some abstract data type, and relate this idea to a classic data abstraction technique by Hoare. Finally, as part of the thesis we also present a survey of tools that are currently available for doing manual or semi-automated proofs as well as program analyses with separation logic and rely guarantee.</p>


Author(s):  
Apostolos Modas ◽  
Simone Casale-Brunet ◽  
Robert Stewart ◽  
Endri Bezati ◽  
Junaid Ahmad ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Longmei Nan ◽  
Xiaoyang Zeng ◽  
Yiran Du ◽  
Zibin Dai ◽  
Lin Chen

To solve the problem of complex relationships among variables and the difficulty of extracting shared variables from nonlinear Boolean functions (NLBFs), an association logic model of variables is established using the classical Apriori rule mining algorithm and the association analysis launched during shared variable extraction (SVE). This work transforms the SVE problem into a traveling salesman problem (TSP) and proposes an SVE based on particle swarm optimization (SVE-PSO) method that combines the association rule mining method with swarm intelligence to improve the efficiency of SVE. Then, according to the shared variables extracted from various NLBFs, the distribution of the shared variables is created, and two corresponding hardware circuits, Element A and Element B, based on cascade lookup table (LUT) structures are proposed to process the various NLBFs. Experimental results show that the performance of SVE via SVE-PSO method is significantly more efficient than the classical association rule mining algorithms. The ratio of the rules is 80.41%, but the operation time is only 21.47% when compared to the Apriori method, which uses 200 iterations. In addition, the area utilizations of Element A and Element B expended by the NLBFs via different parallelisms are measured and compared with other methods. The results show that the integrative performances of Element A and Element B are significantly better than those of other methods. The proposed SVE-PSO method and two cascade LUT-structure circuits can be widely used in coarse-grained reconfigurable cryptogrammic processors, or in application-specific instruction-set cryptogrammic processors, to advance the performance of NLBF processing and mapping.


10.29007/l2sp ◽  
2018 ◽  
Author(s):  
Shuling Wang ◽  
Xu Wang

Simpson's four-slot algorithm has been an instructive example in studying various assertional proof methods/logics geared towards shared variable concurrency. Previously, techniques like rely-guarantee, data refinement and resource separation have been applied to simplify the construction of its correctness proof. Still, an elegant, concise and insightful proof is elusive.Recently with the new generation of logics coming of age which are, for the first time, equipped with ownership transfer, it becomes imperative to ask to what extent can ownership transfer facilitate a nice proof of the algorithm. Ownership transfer is especially promising here because the conflict resolution mechanism in the four-slot algorithm can be easily recast as an implementation based on ownership transfer.


Author(s):  
Fuyuan Zhang ◽  
Yongwang Zhao ◽  
David Sanán ◽  
Yang Liu ◽  
Alwen Tiu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document