moduli of curves
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 8)

H-INDEX

6
(FIVE YEARS 1)

2021 ◽  
Vol 389 ◽  
pp. 107898
Author(s):  
Mattia Galeotti


Author(s):  
KENNETH ASCHER ◽  
KRISTIN DEVLEMING ◽  
YUCHEN LIU

Abstract We show that the K-moduli spaces of log Fano pairs $\left(\mathbb {P}^1\times \mathbb {P}^1, cC\right)$ , where C is a $(4,4)$ curve and their wall crossings coincide with the VGIT quotients of $(2,4)$ , complete intersection curves in $\mathbb {P}^3$ . This, together with recent results by Laza and O’Grady, implies that these K-moduli spaces form a natural interpolation between the GIT moduli space of $(4,4)$ curves on $\mathbb {P}^1\times \mathbb {P}^1$ and the Baily–Borel compactification of moduli of quartic hyperelliptic K3 surfaces.



2021 ◽  
Vol 21 (1) ◽  
pp. 23-43
Author(s):  
Drew Johnson ◽  
Alexander Polishchuk

Abstract We study birational projective models of 𝓜2,2 obtained from the moduli space of curves with nonspecial divisors. We describe geometrically which singular curves appear in these models and show that one of them is obtained by blowing down the Weierstrass divisor in the moduli stack of 𝓩-stable curves 𝓜 2,2(𝓩) defined by Smyth. As a corollary, we prove projectivity of the coarse moduli space M 2,2(𝓩).



2020 ◽  
Vol Volume 4 ◽  
Author(s):  
Rahul Pandharipande ◽  
Johannes Schmitt

While the Chow groups of 0-dimensional cycles on the moduli spaces of Deligne-Mumford stable pointed curves can be very complicated, the span of the 0-dimensional tautological cycles is always of rank 1. The question of whether a given moduli point [C,p_1,...,p_n] determines a tautological 0-cycle is subtle. Our main results address the question for curves on rational and K3 surfaces. If C is a nonsingular curve on a nonsingular rational surface of positive degree with respect to the anticanonical class, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the virtual dimension in Gromov-Witten theory of the moduli space of stable maps. If C is a nonsingular curve on a K3 surface, we prove [C,p_1,...,p_n] is tautological if the number of markings does not exceed the genus of C and every marking is a Beauville-Voisin point. The latter result provides a connection between the rank 1 tautological 0-cycles on the moduli of curves and the rank 1 tautological 0-cycles on K3 surfaces. Several further results related to tautological 0-cycles on the moduli spaces of curves are proven. Many open questions concerning the moduli points of curves on other surfaces (Abelian, Enriques, general type) are discussed. Comment: Published version



Author(s):  
Gabriel C Drummond-Cole ◽  
Mehdi Tavakol

Abstract For a family of Jacobians of smooth pointed curves, there is a notion of tautological algebra. There is an action of ${\mathfrak{s}}l_2$ on this algebra. We define and study a lifting of the Polishchuk operator, corresponding to ${\mathfrak{f}} \in{\mathfrak{s}}l_2$, on an algebra consisting of punctured Riemann surfaces. As an application, we compare a class of tautological relations on moduli of curves, discovered by Faber and Zagier and relations on the universal Jacobian. We prove that the so called top Faber–Zagier relations come from a class of relations on the Jacobian side.



2020 ◽  
Vol 365 ◽  
pp. 107010 ◽  
Author(s):  
Ciro Ciliberto ◽  
Thomas Dedieu ◽  
Concettina Galati ◽  
Andreas Leopold Knutsen


2020 ◽  
Vol 53 (4) ◽  
pp. 945-992
Author(s):  
Gavril FARKAS ◽  
Richard RIMANYI
Keyword(s):  


2019 ◽  
Vol 111 (2) ◽  
pp. 315-338
Author(s):  
Kefeng Liu ◽  
Yunhui Wu


2018 ◽  
Vol 2019 (21) ◽  
pp. 6614-6660 ◽  
Author(s):  
Yuji Odaka

Abstract We compactify the classical moduli variety Ag of principally polarized abelian varieties of complex dimension g, by attaching the moduli of flat tori of real dimensions at most g in an explicit manner. Equivalently, we explicitly determine the Gromov–Hausdorff limits of principally polarized abelian varieties. This work is analogous to [50], where we compactified the moduli of curves by attaching the moduli of metrized graphs. Then, we also explicitly specify the Gromov–Hausdorff limits along holomorphic families of abelian varieties and show that these form special nontrivial subsets of the whole boundary. We also do the same for algebraic curves case and observe a crucial difference with the case of abelian varieties.



Sign in / Sign up

Export Citation Format

Share Document