subsolidus region
Recently Published Documents


TOTAL DOCUMENTS

15
(FIVE YEARS 2)

H-INDEX

4
(FIVE YEARS 0)

Author(s):  
J. G. Bazarova ◽  
A. V. Logvinova ◽  
B. G. Bazarov

A fundamental problem in materials science consists in establishing a relationship between the chemical composition, structure, and properties of materials. This issue can be solved through the study of multicomponent systems and the directed synthesis of promising compounds. Of practical interest here are active dielectrics that are based on complex oxide compounds, specifically molybdates. Among complex molybdates and tungstates, ternary caged molybdates of the following structural types are of greatest importance: nasicon, perovskite, langbeinite, etc. Due to their widely varying elemental and quantitative compositions, such molybdates are convenient models for structural and chemical design, as well as the establishment of “composition–structure– properties” genetic relationships. Bismuth-containing complex molybdate systems exhibit the formation of phases having ferro-piezoelectric, ionic, and other properties. In this work, the Rb2MoO4–Bi2(MoO4)3–Zr(MoO4)2 ter nary salt system was studied for the first time using the method of intersecting sections in the subsolidus region (450–650 ℃). To this end, quasibinary sections were identified; triangulation was performed. Ternary molybdates Rb5BiZr(MoO4)6 and Rb2BiZr2(MoO4)6,5 were formed in the system using a ceramic technology. These compounds are isostructural to the previously obtained REE molybdates (M5LnZr(MoO4)6) but contain trivalent bismuth instead of rare earth elements. The structure of Rb5BiZr(MoO4)6 was adjusted via the Rietveld refinement technique using the TOPAS 4.2 software package. The ternary molybdate crystallizes in a trigonal system, with the following unit cell parameters of the R`3c space group: a = 10.7756(2) and c = 39.0464(7) Å. According to the studies of thermal properties exhibited by M5BiZr(MoO4)6, these ternary molybdates undergo the first-order phase transition in the temperature range of 450–600 ºC. The IR and Raman spectra of M5BiZr(MoO4)6 reveal the crystallization of ternary molybdates in the R`3c space group. The conducted comparative characterization of M2MoO4–Bi2(MoO4)3–Zr(MoO4)2 phase diagrams suggests that the phase equilibria of these systems depend on the nature of molybdates of monovalent elements.


Author(s):  
S. G. Mamontova ◽  
A. A. Dergin ◽  
A. I. Nepomnyashchikh ◽  
E. V. Kaneva
Keyword(s):  

2017 ◽  
Vol 94 (9) ◽  
pp. 1247-1254
Author(s):  
Victor E. Alvarez-Montaño ◽  
Mario H. Farías ◽  
Francisco Brown ◽  
Iliana C. Muñoz-Palma ◽  
Fernando Cubillas ◽  
...  

ChemInform ◽  
2010 ◽  
Vol 30 (52) ◽  
pp. no-no
Author(s):  
E. V. Arkhipova ◽  
M. G. Zuev ◽  
S. A. Bekker

2009 ◽  
Vol 54 (4) ◽  
pp. 638-643 ◽  
Author(s):  
N. M. Kozhevnikova ◽  
A. V. Imekhenova
Keyword(s):  

2008 ◽  
Vol 53 (9) ◽  
pp. 1512-1516 ◽  
Author(s):  
Yu. F. Kargin ◽  
S. N. Ivicheva ◽  
L. I. Shvorneva ◽  
M. G. Komova ◽  
V. A. Krut’ko

Sign in / Sign up

Export Citation Format

Share Document