partial auc
Recently Published Documents


TOTAL DOCUMENTS

26
(FIVE YEARS 9)

H-INDEX

8
(FIVE YEARS 2)

2020 ◽  
Author(s):  
Zhongxin Bai ◽  
Xiao-Lei Zhang ◽  
Jingdong Chen

2020 ◽  
Author(s):  
Pablo Gimeno ◽  
Victoria Mingote ◽  
Alfonso Ortega ◽  
Antonio Miguel ◽  
Eduardo Lleida

Big Data ◽  
2020 ◽  
Vol 8 (5) ◽  
pp. 391-411
Author(s):  
Akihiro Yamaguchi ◽  
Shigeru Maya ◽  
Kohei Maruchi ◽  
Ken Ueno

Author(s):  
André M. Carrington ◽  
Paul W. Fieguth ◽  
Hammad Qazi ◽  
Andreas Holzinger ◽  
Helen H. Chen ◽  
...  

Abstract Background In classification and diagnostic testing, the receiver-operator characteristic (ROC) plot and the area under the ROC curve (AUC) describe how an adjustable threshold causes changes in two types of error: false positives and false negatives. Only part of the ROC curve and AUC are informative however when they are used with imbalanced data. Hence, alternatives to the AUC have been proposed, such as the partial AUC and the area under the precision-recall curve. However, these alternatives cannot be as fully interpreted as the AUC, in part because they ignore some information about actual negatives. Methods We derive and propose a new concordant partial AUC and a new partial c statistic for ROC data—as foundational measures and methods to help understand and explain parts of the ROC plot and AUC. Our partial measures are continuous and discrete versions of the same measure, are derived from the AUC and c statistic respectively, are validated as equal to each other, and validated as equal in summation to whole measures where expected. Our partial measures are tested for validity on a classic ROC example from Fawcett, a variation thereof, and two real-life benchmark data sets in breast cancer: the Wisconsin and Ljubljana data sets. Interpretation of an example is then provided. Results Results show the expected equalities between our new partial measures and the existing whole measures. The example interpretation illustrates the need for our newly derived partial measures. Conclusions The concordant partial area under the ROC curve was proposed and unlike previous partial measure alternatives, it maintains the characteristics of the AUC. The first partial c statistic for ROC plots was also proposed as an unbiased interpretation for part of an ROC curve. The expected equalities among and between our newly derived partial measures and their existing full measure counterparts are confirmed. These measures may be used with any data set but this paper focuses on imbalanced data with low prevalence. Future work Future work with our proposed measures may: demonstrate their value for imbalanced data with high prevalence, compare them to other measures not based on areas; and combine them with other ROC measures and techniques.


2017 ◽  
Vol 29 (7) ◽  
pp. 1919-1963 ◽  
Author(s):  
Harikrishna Narasimhan ◽  
Shivani Agarwal

The area under the ROC curve (AUC) is a widely used performance measure in machine learning. Increasingly, however, in several applications, ranging from ranking to biometric screening to medicine, performance is measured not in terms of the full area under the ROC curve but in terms of the partial area under the ROC curve between two false-positive rates. In this letter, we develop support vector algorithms for directly optimizing the partial AUC between any two false-positive rates. Our methods are based on minimizing a suitable proxy or surrogate objective for the partial AUC error. In the case of the full AUC, one can readily construct and optimize convex surrogates by expressing the performance measure as a summation of pairwise terms. The partial AUC, on the other hand, does not admit such a simple decomposable structure, making it more challenging to design and optimize (tight) convex surrogates for this measure. Our approach builds on the structural SVM framework of Joachims ( 2005 ) to design convex surrogates for partial AUC and solves the resulting optimization problem using a cutting plane solver. Unlike the full AUC, where the combinatorial optimization needed in each iteration of the cutting plane solver can be decomposed and solved efficiently, the corresponding problem for the partial AUC is harder to decompose. One of our main contributions is a polynomial time algorithm for solving the combinatorial optimization problem associated with partial AUC. We also develop an approach for optimizing a tighter nonconvex hinge loss–based surrogate for the partial AUC using difference-of-convex programming. Our experiments on a variety of real-world and benchmark tasks confirm the efficacy of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document