beam complexity
Recently Published Documents


TOTAL DOCUMENTS

7
(FIVE YEARS 3)

H-INDEX

2
(FIVE YEARS 0)

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Chengqiang Li ◽  
Cheng Tao ◽  
Tong Bai ◽  
Zhenjiang Li ◽  
Ying Tong ◽  
...  

Abstract Background To investigate the beam complexity and monitor unit (MU) efficiency issues for two different volumetric modulated arc therapy (VMAT) delivery technologies for patients with left-sided breast cancer (BC) and nasopharyngeal carcinoma (NPC). Methods Twelve left-sided BC and seven NPC cases were enrolled in this study. Each delivered treatment plan was optimized in the Pinnacle3 treatment planning system with the Auto-Planning module for the Trilogy and Synergy systems. Similar planning dose objectives and beam configurations were used for each site in the two different delivery systems to produce clinically acceptable plans. The beam complexity was evaluated in terms of the segment area (SA), segment width (SW), leaf sequence variability (LSV), aperture area variability (AAV), and modulation complexity score (MCS) based on the multileaf collimator sequence and MU. Plan delivery and a gamma evaluation were performed using a helical diode array. Results With similar plan quality, the average SAs for the Trilogy plans were smaller than those for the Synergy plans: 55.5 ± 21.3 cm2 vs. 66.3 ± 17.9 cm2 (p < 0.05) for the NPC cases and 100.7 ± 49.2 cm2 vs. 108.5 ± 42.7 cm2 (p < 0.05) for the BC cases, respectively. The SW was statistically significant for the two delivery systems (NPC: 6.87 ± 1.95 cm vs. 6.72 ± 2.71 cm, p < 0.05; BC: 8.84 ± 2.56 cm vs. 8.09 ± 2.63 cm, p < 0.05). The LSV was significantly smaller for Trilogy (NPC: 0.84 ± 0.033 vs. 0.86 ± 0.033, p < 0.05; BC: 0.89 ± 0.026 vs. 0.90 ± 0.26, p < 0.05). The mean AAV was significantly larger for Trilogy than for Synergy (NPC: 0.18 ± 0.064 vs. 0.14 ± 0.037, p < 0.05; BC: 0.46 ± 0.15 vs. 0.33 ± 0.13, p < 0.05). The MCS values for Trilogy were higher than those for Synergy: 0.14 ± 0.016 vs. 0.12 ± 0.017 (p < 0.05) for the NPC cases and 0.42 ± 0.106 vs. 0.30 ± 0.087 (p < 0.05) for the BC cases. Compared with the Synergy plans, the average MUs for the Trilogy plans were larger: 828.6 ± 74.1 MU and 782.9 ± 85.2 MU (p > 0.05) for the NPC cases and 444.8 ± 61.3 MU and 393.8 ± 75.3 MU (p > 0.05) for the BC cases. The gamma index agreement scores were never below 91% using 3 mm/3% (global) distance to agreement and dose difference criteria and a 10% lower dose exclusion threshold. Conclusions The Pinnacle3 Auto-Planning system can optimize BC and NPC plans to achieve the same plan quality using both the Trilogy and Synergy systems. We found that these two systems resulted in different SAs, SWs, LSVs, AAVs and MCSs. As a result, we suggested that the beam complexity should be considered in the development of further methodologies while optimizing VMAT autoplanning.


2020 ◽  
Author(s):  
Chengqiang Li ◽  
Cheng Tao ◽  
Tong Bai ◽  
Zhenjiang Li ◽  
Ying Tong ◽  
...  

Abstract Background: To investigate the beam complexity and monitor unit(MU)efficiency issues for two different volumetric modulated arc therapy (VMAT) delivery technologies for patients with left-sided breast cancer (BC) and nasopharyngeal carcinoma (NPC). Methods: Twelve left-sided BC and seven NPC cases were enrolled in this study. Each delivered treatment plan was optimized in Pinnacle 3 treatment planning system with Auto-Planning module for Trilogy and Synergy systems. Similar planning dose objectives and beam configuration were used for each site in two different delivery systems to produce clinically acceptable plans. Beam complexity was evaluated in terms of segment area(SA), segment width(SW), leaf sequence variability(LSV), aperture area variability(AAV), modulation complexity score(MCS) based on MLC sequence and MU. Results: With similar plan quality, the average SAs for Trilogy plans were smaller than those for Synergy plans: 55.5 ± 21.3 cm 2 vs. 66.3 ± 17.9 cm 2 (p<0.05) for the NPC cases, and 100.7 ± 49.2 cm 2 vs. 108.5 ± 42.7 cm 2 (p<0.05) for BC cases, respectively. The SW was statistically significant for two delivery systems (NPC: 6.87±1.95cm vs.6.72±2.71cm, p < 0.05; BC: 8.84±2.56cm vs.8.09±2.63cm, p < 0.05). LSV was statistically significant smaller for Trilogy (NPC: 0.84±0.033 vs.0.86±0.033, p < 0.05; BC: 0.89±0.026 vs.0.90±0.26, p < 0.05). The mean AAV was statistically significant larger for Trilogy than Synergy (NPC: 0.18±0.064 vs.0.14±0.037, p < 0.05; BC: 0.46±0.15 vs.0.33±0.13, p < 0.05). The MCS values for the Trilogy were higher than those for the Synergy: 0.14 ± 0.016vs. 0.12 ± 0.017 (p<0.05) for the NPC cases, and 0.42 ± 0.106 vs. 0.30 ± 0.087(p<0.05) for the BC cases. Compared with Synergy plans, the average MU for Trilogy plans were larger: 828.6±74.1MU and 782.9±85.2MU (p>0.05) for the NPC cases, and 444.8±61.3MU and 393.8±75.3MU (p>0.05) for the BC cases. Conclusions: The pinnacle 3 Auto planning system can optimize BC and NPC plans to obtain the same plan quality using Trilogy and Synergy systems. We found that this two systems resulted in different SA, SW, LSV, AAV and MCS. As a result, we suggested that beam complexity should be considered in providing further methodologies while optimizing VMAT auto planning.


2020 ◽  
Author(s):  
Chengqiang Li ◽  
Cheng Tao ◽  
Tong Bai ◽  
Zhenjiang Li ◽  
Ying Tong ◽  
...  

Abstract Background: To investigate the beam complexity and monitor unit(MU)efficiency issues for two different volumetric modulated arc therapy (VMAT) delivery technologies for patients with left-sided breast cancer (BC) and nasopharyngeal carcinoma (NPC). Methods: Twelve left-sided BC and seven NPC cases were enrolled in this study. Each delivered treatment plan was optimized in Pinnacle 3 treatment planning system with Auto-Planning module for Trilogy and Synergy systems. Similar planning dose objectives and beam configuration were used for each site in two different delivery systems to produce clinically acceptable plans. Beam complexity was evaluated in terms of segment area(SA), segment width(SW), leaf sequence variability(LSV), aperture area variability(AAV), modulation complexity score(MCS) based on MLC sequence and MU. Results: With similar plan quality, the average SAs for Trilogy plans were smaller than those for Synergy plans: 55.5 ± 21.3 cm 2 vs. 66.3 ± 17.9 cm 2 (p<0.05) for the NPC cases, and 100.7 ± 49.2 cm 2 vs. 108.5 ± 42.7 cm 2 (p<0.05) for BC cases, respectively. The SW was statistically significant for two delivery systems (NPC: 6.87±1.95cm vs.6.72±2.71cm, p < 0.05; BC: 8.84±2.56cm vs.8.09±2.63cm, p < 0.05). LSV was statistically significant smaller for Trilogy (NPC: 0.84±0.033 vs.0.86±0.033, p < 0.05; BC: 0.89±0.026 vs.0.90±0.26, p < 0.05). The mean AAV was statistically significant larger for Trilogy than Synergy (NPC: 0.18±0.064 vs.0.14±0.037, p < 0.05; BC: 0.46±0.15 vs.0.33±0.13, p < 0.05). The MCS values for the Trilogy were higher than those for the Synergy: 0.14 ± 0.016vs. 0.12 ± 0.017 (p<0.05) for the NPC cases, and 0.42 ± 0.106 vs. 0.30 ± 0.087(p<0.05) for the BC cases. Compared with Synergy plans, the average MU for Trilogy plans were larger: 828.6±74.1MU and 782.9±85.2MU (p>0.05) for the NPC cases, and 444.8±61.3MU and 393.8±75.3MU (p>0.05) for the BC cases. Conclusions: The pinnacle 3 Auto planning system can optimize BC and NPC plans to obtain the same plan quality using Trilogy and Synergy systems. We found that this two systems resulted in different SA, SW, LSV, AAV and MCS. As a result, we suggested that beam complexity should be considered in providing further methodologies while optimizing VMAT auto planning.


2014 ◽  
Vol 41 (6Part17) ◽  
pp. 305-305
Author(s):  
W Du ◽  
S Cho ◽  
X Zhang ◽  
K Hoffman ◽  
R Kudchadker

2014 ◽  
Vol 41 (2) ◽  
pp. 021716 ◽  
Author(s):  
Weiliang Du ◽  
Sang Hyun Cho ◽  
Xiaodong Zhang ◽  
Karen E. Hoffman ◽  
Rajat J. Kudchadker

2007 ◽  
Vol 34 (2) ◽  
pp. 507-520 ◽  
Author(s):  
Martha M. Matuszak ◽  
Edward W. Larsen ◽  
Benedick A. Fraass

Sign in / Sign up

Export Citation Format

Share Document