generalized hamming weight
Recently Published Documents


TOTAL DOCUMENTS

23
(FIVE YEARS 3)

H-INDEX

7
(FIVE YEARS 1)

2020 ◽  
Vol 28 (1) ◽  
pp. 205-217
Author(s):  
Manuel González-Sarabia ◽  
Delio Jaramillo ◽  
Rafael H. Villarreal

AbstractThere is a nice combinatorial formula of P. Beelen and M. Datta for the r-th generalized Hamming weight of an a ne cartesian code. Using this combinatorial formula we give an easy to evaluate formula to compute the r-th generalized Hamming weight for a family of a ne cartesian codes. If 𝕏 is a set of projective points over a finite field we determine the basic parameters and the generalized Hamming weights of the Veronese type codes on 𝕏 and their dual codes in terms of the basic parameters and the generalized Hamming weights of the corresponding projective Reed–Muller-type codes on 𝕏 and their dual codes.


Author(s):  
Farzaneh Farhang Baftani ◽  
Hamid Reza Maimani

The support of an $(n, M, d)$ binary code  $C$ over the set $\mathbf{A}=\{0,1\}$ is the set of all coordinate positions $i$, such  that  at  least two codewords  have distinct entry  in  coordinate $i$.  The  $r$th  generalized  Hamming  weight  $d_r(C)$,  $1\leq r\leq 1+log_2n+1$,  of  $C$  is  defined  as  the minimum  of  the  cardinalities  of  the  supports  of  all subset  of  $C$ of cardinality $2^{r-1}+1$.  The  sequence $(d_1(C), d_2(C), \ldots, d_k(C))$ is called the Hamming weight hierarchy (HWH) of $C$. In this paper we obtain HWH for $(2^k-1, 2^k, 2^{k-1}$ binary Hadamard code corresponding to Sylvester Hadamard matrix $H_{2^k}$ and we show that    $$d_r=2^{k-r} (2^r -1).$$ Also we compute the HWH of all $(4n-1, 4n, 2n)$ Hadamard code for $2\leq n\leq 8$.


2018 ◽  
Vol 52 ◽  
pp. 370-394 ◽  
Author(s):  
Manuel González Sarabia ◽  
Eduardo Camps ◽  
Eliseo Sarmiento ◽  
Rafael H. Villarreal

2014 ◽  
Vol 76 (1) ◽  
pp. 81-87 ◽  
Author(s):  
Wilson Olaya-León ◽  
Claudia Granados-Pinzón

Sign in / Sign up

Export Citation Format

Share Document