combinatorial formula
Recently Published Documents


TOTAL DOCUMENTS

103
(FIVE YEARS 24)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 28 (4) ◽  
Author(s):  
Kyungyong Lee ◽  
George D. Nasr ◽  
Jamie Radcliffe

We present a combinatorial formula using skew Young tableaux for the coefficients of Kazhdan-Lusztig polynomials for sparse paving matroids. These matroids are known to be logarithmically almost all matroids, but are conjectured to be almost all matroids. We also show the positivity of these coefficients using our formula. In special cases, such as uniform matroids, our formula has a nice combinatorial interpretation.


Author(s):  
Seokbeom Yoon

Cho and Murakami defined the potential function for a link [Formula: see text] in [Formula: see text] whose critical point, slightly different from the usual sense, corresponds to a boundary-parabolic representation [Formula: see text]. They also showed that the volume and Chern–Simons invariant of [Formula: see text] can be computed from the potential function with its partial derivatives. In this paper, we extend the potential function to a representation that is not necessarily boundary-parabolic. We show that under a mild assumption it leads us to a combinatorial formula for computing the volume and Chern–Simons invariant of a [Formula: see text]-representation of a closed 3-manifold.


2021 ◽  
pp. 1-16
Author(s):  
ADAM EPSTEIN ◽  
GIULIO TIOZZO

Abstract We generalize a combinatorial formula of Douady from the main cardioid to other hyperbolic components H of the Mandelbrot set, constructing an explicit piecewise linear map which sends the set of angles of external rays landing on H to the set of angles of external rays landing on the real axis.


Author(s):  
Ajay Kumar ◽  
Pavinder Singh ◽  
Rohit Verma

In this paper, we obtain a combinatorial formula for computing the Betti numbers in the linear strand of edge ideals of bipartite Kneser graphs. We deduce lower and upper bounds for regularity of powers of edge ideals of these graphs in terms of associated combinatorial data and show that the lower bound is attained in some cases. Also, we obtain bounds on the projective dimension of edge ideals of these graphs in terms of combinatorial data.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Wolfgang Mück

Abstract Supersymmetric circular Wilson loops in $$ \mathcal{N} $$ N = 4 Super-Yang-Mills theory are discussed starting from their Gaussian matrix model representations. Previous results on the generating functions of Wilson loops are reviewed and extended to the more general case of two different loop contours, which is needed to discuss coincident loops with opposite orientations. A combinatorial formula representing the connected correlators of multiply wound Wilson loops in terms of the matrix model solution is derived. Two new results are obtained on the expectation value of the circular Wilson loop, the expansion of which into a series in 1/N and to all orders in the ’t Hooft coupling λ was derived by Drukker and Gross about twenty years ago. The connected correlators of two multiply wound Wilson loops with arbitrary winding numbers are calculated as a series in 1/N. The coefficient functions are derived not only as power series in λ, but also to all orders in λ by expressing them in terms of the coefficients of the Drukker and Gross series. This provides an efficient way to calculate the 1/N series, which can probably be generalized to higher-point correlators.


2021 ◽  
Vol 28 (2) ◽  
Author(s):  
Nursel Erey ◽  
Takayuki Hibi

Let $I(G)^{[k]}$ denote the $k$th squarefree power of the edge ideal of $G$. When $G$ is a forest, we provide a sharp upper bound for the regularity of $I(G)^{[k]}$ in terms of the $k$-admissable matching number of $G$. For any positive integer $k$, we classify all forests $G$ such that $I(G)^{[k]}$ has linear resolution. We also give a combinatorial formula for the regularity of $I(G)^{[2]}$ for any forest $G$.


Author(s):  
Rong Wang ◽  
Xiaoni Du ◽  
Cuiling Fan ◽  
Zhihua Niu

Due to their important applications to coding theory, cryptography, communications and statistics, combinatorial [Formula: see text]-designs have attracted lots of research interest for decades. The interplay between coding theory and [Formula: see text]-designs started many years ago. It is generally known that [Formula: see text]-designs can be used to derive linear codes over any finite field, and that the supports of all codewords with a fixed weight in a code also may hold a [Formula: see text]-design. In this paper, we first construct a class of linear codes from cyclic codes related to Dembowski-Ostrom functions. By using exponential sums, we then determine the weight distribution of the linear codes. Finally, we obtain infinite families of [Formula: see text]-designs from the supports of all codewords with a fixed weight in these codes. Furthermore, the parameters of [Formula: see text]-designs are calculated explicitly.


Author(s):  
Esther Banaian ◽  
◽  
Elizabeth Kelley ◽  

We give an explicit combinatorial formula for the Laurent expansion of any arc or closed curve on an unpunctured triangulated orbifold. We do this by extending the snake graph construction of Musiker, Schiffler, and Williams to unpunctured orbifolds. In the case of an ordinary arc, this gives a combinatorial proof of positivity to the generalized cluster algebra from this orbifold.


2020 ◽  
Vol 3 (2) ◽  
pp. 170-177
Author(s):  
Leomarich F Casinillo

Let G=(V(G), E(G)) be a path or cycle graph. A subset D of V(G) is a dominating set of G if for every u element of V(G)\D, there exists v element of D such that uv element of E(G), that is, N[D]=V(G). The domination number of G, denoted by gamma(G), is the smallest cardinality of a dominating set of G. A set D_1 subset of V(G) is a set containing dominating vertices of degree 2, that is, each vertex is internally stable. A set D_2 subset of V(G) is a set containing dominating vertices where one of the element say a element of D_2,  and the rest are of degree 2. A set  D_3 subset of V(G) is a set containing dominating vertices in which two of the elements say b, c element of D_3, deg(b)=deg(c)=1. This paper developed a new combinatorial formula that determines the number of ways of putting a dominating set in a path and cycle graphs of order n>=1 and n>=3, respectively. Further, a combinatorial function P^1_G(n),  P^2_G(n) and P^3_G(n) that determines the probability of getting the set D_1, D_2, and D_3, respectively in graph G of order n were constructed.


2020 ◽  
Vol 3 (2) ◽  
pp. 70
Author(s):  
Emily L Casinillo ◽  
Leomarich F Casinillo

<p>Let G=(V(G), E(G)) be a connected graph where V(G) is a finite nonempty set called vertex-set of G, and  E(G) is a set of unordered pairs {u, v} of distinct elements from  V(G) called the edge-set of G. If  is a connected acyclic graph or a connected graph with no cycles, then it is called a tree graph. A binary tree Tl with l levels is complete if all levels except possibly the last are completely full, and the last level has all its nodes to the left side. If we form a path on each level of a full and complete binary tree, then the graph is now called full and complete binary planar graph and it is denoted as Bn, where n is the level of the graph. This paper introduced a new planar graph which is derived from binary tree graphs. In addition, a combinatorial formula for counting its vertices, faces, and edges that depends on the level of the graph was developed.</p>


Sign in / Sign up

Export Citation Format

Share Document