graceful labeling
Recently Published Documents


TOTAL DOCUMENTS

142
(FIVE YEARS 54)

H-INDEX

4
(FIVE YEARS 2)

2022 ◽  
Vol 7 (3) ◽  
pp. 3554-3589
Author(s):  
Mohamed R. Zeen El Deen ◽  
◽  
Ghada Elmahdy ◽  

<abstract><p>Graph labeling is a source of valuable mathematical models for an extensive range of applications in technologies (communication networks, cryptography, astronomy, data security, various coding theory problems). An edge $ \; \delta - $ graceful labeling of a graph $ G $ with $ p\; $ vertices and $ q\; $ edges, for any positive integer $ \; \delta $, is a bijective $ \; f\; $ from the set of edge $ \; E(G)\; $ to the set of positive integers $ \; \{ \delta, \; 2 \delta, \; 3 \delta, \; \cdots\; , \; q\delta\; \} $ such that all the vertex labels $ \; f^{\ast} [V(G)] $, given by: $ f^{\ast}(u) = (\sum\nolimits_{uv \in E(G)} f(uv)\; )\; mod\; (\delta \; k) $, where $ k = max (p, q) $, are pairwise distinct. In this paper, we show the existence of an edge $ \; \delta- $ graceful labeling, for any positive integer $ \; \delta $, for the following graphs: the splitting graphs of the cycle, fan, and crown, the shadow graphs of the path, cycle, and fan graph, the middle graphs and the total graphs of the path, cycle, and crown. Finally, we display the existence of an edge $ \; \delta- $ graceful labeling, for the twig and snail graphs.</p></abstract>


Author(s):  
Shivarajkumar ◽  
M. A. Sriraj ◽  
S. M. Hegde
Keyword(s):  

Author(s):  
Amit Sehgal ◽  
Neeraj Takshak ◽  
Pradeep Maan ◽  
Archana Malik

The power graph of a finite group G is a special type of undirected simple graph whose vertex set is set of elements of G, in which two distinct vertices of G are adjacent if one is the power of other. Let [Formula: see text] be a finite abelian 2-group of order [Formula: see text] where [Formula: see text]. In this paper, we establish that the power graph of finite abelian group G always has graceful labeling without any condition on [Formula: see text].


2021 ◽  
Vol 20 ◽  
pp. 378-386
Author(s):  
Faris M. Taweel ◽  
Eman A. Abuhijleh ◽  
Shorouq Ali

A method for relaxed graceful labeling of P2n graphs is presented together with an algorithm designed for labeling these graphs. Graceful labeling is achieved by relaxing the range to 2m and perform the labeling using an algorithm with quadratic complexity (O(n2)). The algorithm can be used for labeling any P2n graph with n ≥ 3, as far as the machine can handle the size of the problem.


Mathematics ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1393
Author(s):  
Jing Su ◽  
Hongyu Wang ◽  
Bing Yao

A variety of labelings on trees have emerged in order to attack the Graceful Tree Conjecture, but lack showing the connections between two labelings. In this paper, we propose two new labelings: vertex image-labeling and edge image-labeling, and combine new labelings to form matching-type image-labeling with multiple restrictions. The research starts from the set-ordered graceful labeling of the trees, and we give several generation methods and relationships for well-known labelings and two new labelings on trees.


2021 ◽  
Vol 3 (2) ◽  
pp. 103-114
Author(s):  
Meliana Pasaribu ◽  
Yundari Yundari ◽  
Muhammad Ilyas

Graceful Labeling on graph G=(V, E) is an injective function f from the set of the vertex V(G) to the set of numbers {0,1,2,...,|E(G)|} which induces bijective function f from the set of edges E(G) to the set of numbers {1,2,...,|E(G)|} such that for each edge uv e E(G) with u,v e V(G) in effect f(uv)=|f(u)-f(v)|. Meanwhile, the Skolem graceful labeling is a modification of the Graceful labeling. The graph has graceful labeling or Skolem graceful labeling is called graceful graph or Skolem graceful labeling graph. The graph used in this study is the U-star graph, which is denoted by U(Sn). The purpose of this research is to determine the pattern of the graceful labeling and Skolem graceful labeling on graph U(Sn) apply it to cryptography polyalphabetic cipher. The research begins by forming a graph U(Sn) and they are labeling it with graceful labeling and Skolem graceful labeling. Then, the labeling results are applied to the cryptographic polyalphabetic cipher. In this study, it is found that the U(Sn) graph is a graceful graph and a Skolem graceful graph, and the labeling pattern is obtained. Besides, the labeling results on a graph it U(Sn) can be used to form a table U(Sn) polyalphabetic cipher. The table is used as a key to encrypt messages.


2021 ◽  
Vol 1872 (1) ◽  
pp. 012007
Author(s):  
D Jayantara ◽  
Purwanto ◽  
S Irawati

Sign in / Sign up

Export Citation Format

Share Document