global integrability
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 1)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Vol 13 (3) ◽  
pp. 355
Author(s):  
Rui L. Fernandes ◽  
Yuxuan Zhang

<p style='text-indent:20px;'>We survey recent results on the local and global integrability of a Lie algebroid, as well as the integrability of infinitesimal multiplicative geometric structures on it.</p>





2020 ◽  
Vol 296 (3-4) ◽  
pp. 1049-1063
Author(s):  
Hiroaki Aikawa ◽  
Takanobu Hara ◽  
Kentaro Hirata
Keyword(s):  


2019 ◽  
Vol 16 (3) ◽  
pp. 329-344
Author(s):  
Vladimir Gol'dshtein ◽  
Alexander Ukhlov

We study the functional properties of weak (p,q)-quasiconformal homeomorphisms such as Liouville-type theorems, the global integrability, and the Hölder continuity. The proof of Liouville-type theorems is based on the duality property of weak (p,q)-quasiconformal homeomorphisms.



2018 ◽  
Vol 30 (5) ◽  
pp. 1237-1243
Author(s):  
Hongya Gao ◽  
Miaomiao Jia

AbstractThis paper deals with the problem\displaystyle u\in{\cal K}_{u_{*},\psi}(\Omega),\displaystyle\forall v\in{\cal K}_{u_{*},\psi}(\Omega):\int_{\Omega}\sum_{i=1}% ^{n}[a_{i}(x,Du)-f^{i}]D_{i}(u-v)\,dx\leqslant\int_{\Omega}f(u-v)\,dx,where\left\{\begin{aligned} &\displaystyle{\cal K}_{u_{*},\psi}(\Omega)=\biggl{\{}v% \in u_{*}+W_{0}^{1,(p_{i})}(\Omega):\sum_{i=1}^{n}a_{i}(x,Du)D_{i}v\in L^{1}(% \Omega)\text{ and }v\geqslant\psi,\text{ a.e. }\Omega\biggr{\}},\\ &\displaystyle u_{*}\in W^{1,(p_{i})}(\Omega),\quad\theta=\max\{u_{*},\psi\}% \in u_{*}+W_{0}^{1,(p_{i})}(\Omega),\\ &\displaystyle f\in L^{(\bar{p}^{*})^{\prime}}(\Omega),\quad f^{i}\in L^{p_{i}% ^{\prime}}(\Omega),\,i=1,\dots,n,\end{aligned}\right.and the Carathéodory functions {a_{i}:\Omega\times{\mathbb{R}}^{n}\to{\mathbb{R}}}, {i=1,\dots,n}, satisfy some coercivity condition. We assume that the function {\theta=\max\{u_{*},\psi\}} makes {a_{i}(x,D\theta)} to be more integrable than {L^{p_{i}^{\prime}}(\Omega)}, {i=1,\dots,n}, and then we prove that the solution u enjoys higher integrability.



2016 ◽  
Vol 442 (1) ◽  
pp. 244-258
Author(s):  
Hongya Gao ◽  
Shuang Liang ◽  
Yi Cui
Keyword(s):  


2016 ◽  
Vol 51 (1) ◽  
pp. 223-236
Author(s):  
Hongya Gao ◽  
◽  
Shuang Liang ◽  
Yi Cui ◽  
◽  
...  


2015 ◽  
Vol 113 ◽  
pp. 430-434 ◽  
Author(s):  
Alessandra Innamorati ◽  
Francesco Leonetti


2013 ◽  
Vol 144 (1-2) ◽  
pp. 91-98 ◽  
Author(s):  
Francesco Leonetti ◽  
Francesco Siepe
Keyword(s):  


Sign in / Sign up

Export Citation Format

Share Document