balanced loss function
Recently Published Documents


TOTAL DOCUMENTS

64
(FIVE YEARS 10)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Farouk Metiri ◽  
Halim Zeghdoudi ◽  
Ahmed Saadoun

PurposeThis paper generalizes the quadratic framework introduced by Le Courtois (2016) and Sumpf (2018), to obtain new credibility premiums in the balanced case, i.e. under the balanced squared error loss function. More precisely, the authors construct a quadratic credibility framework under the net quadratic loss function where premiums are estimated based on the values of past observations and of past squared observations under the parametric and the non-parametric approaches, this framework is useful for the practitioner who wants to explicitly take into account higher order (cross) moments of past data.Design/methodology/approachIn the actuarial field, credibility theory is an empirical model used to calculate the premium. One of the crucial tasks of the actuary in the insurance company is to design a tariff structure that will fairly distribute the burden of claims among insureds. In this work, the authors use the weighted balanced loss function (WBLF, henceforth) to obtain new credibility premiums, and WBLF is a generalized loss function introduced by Zellner (1994) (see Gupta and Berger (1994), pp. 371-390) which appears also in Dey et al. (1999) and Farsipour and Asgharzadhe (2004).FindingsThe authors declare that there is no conflict of interest and the funding information is not applicable.Research limitations/implicationsThis work is motivated by the following: quadratic credibility premium under the balanced loss function is useful for the practitioner who wants to explicitly take into account higher order (cross) moments and new effects such as the clustering effect to finding a premium more credible and more precise, which arranges both parts: the insurer and the insured. Also, it is easy to apply for parametric and non-parametric approaches. In addition, the formulas of the parametric (Poisson–gamma case) and the non-parametric approach are simple in form and may be used to find a more flexible premium in many special cases. On the other hand, this work neglects the semi-parametric approach because it is rarely used by practitioners.Practical implicationsThere are several examples of actuarial science (credibility).Originality/valueIn this paper, the authors used the WBLF and a quadratic adjustment to obtain new credibility premiums. More precisely, the authors construct a quadratic credibility framework under the net quadratic loss function where premiums are estimated based on the values of past observations and of past squared observations under the parametric and the non-parametric approaches, this framework is useful for the practitioner who wants to explicitly take into account higher order (cross) moments of past data.


Author(s):  
Abdenour Hamdaoui ◽  
Mekki Terbeche ◽  
Abdelkader Benkhaled

In this paper, we are interested in estimating a multivariate normal mean under the balanced loss function using the shrinkage estimators deduced from the Maximum Likelihood Estimator (MLE). First, we consider a class of estimators containing the James-Stein estimator, we then show that any estimator of this class dominates the MLE, consequently it is minimax. Secondly, we deal with shrinkage estimators which are not only minimax but also dominate the James- Stein estimator.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Fuad S. Al-Duais ◽  
Mohammed Alhagyan

Majority research studies in the literature determine the weighted coefficients of balanced loss function by suggesting some arbitrary values and then conducting comparison study to choose the best. However, this methodology is not efficient because there is no guarantee ensures that one of the chosen values is the best. This encouraged us to look for mathematical method that gives and guarantees the best values of the weighted coefficients. The proposed methodology in this research is to employ the nonlinear programming in determining the weighted coefficients of balanced loss function instead of the unguaranteed old methods. In this research, we consider two balanced loss functions including balanced square error (BSE) loss function and balanced linear exponential (BLINEX) loss function to estimate the parameter and reliability function of inverse Rayleigh distribution (IRD) based on lower record values. Comparisons are made between Bayesian estimators (SE, BSE, LINEX, and BLINEX) and maximum likelihood estimator via Monte Carlo simulation. The evaluation was done based on absolute bias and mean square errors. The outputs of the simulation showed that the balanced linear exponential (BLINEX) loss function has the best performance. Moreover, the simulation verified that the balanced loss functions are always better than corresponding loss function.


Author(s):  
Mekki Terbeche

In this paper we study the estimation of a multivariate normal mean under the balanced loss function. We present here a class of shrinkage estimators which generalizes the James-Stein estimator and we are interested to establish the asymptotic behaviour of risks ratios of these estimators to the maximum likelihood estimators (MLE). Thus, in the case where the dimension of the parameter space and the sample size are large, we determine the sufficient conditions for that the estimators cited previously are minimax


2019 ◽  
Vol 345 ◽  
pp. 86-98
Author(s):  
Selahattin Kaçıranlar ◽  
Issam Dawoud

Sign in / Sign up

Export Citation Format

Share Document