causal curve
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 4)

H-INDEX

0
(FIVE YEARS 0)

2021 ◽  
Vol 111 (6) ◽  
Author(s):  
Benedict Schinnerl ◽  
Roland Steinbauer

AbstractWe prove a Gannon–Lee theorem for non-globally hyperbolic Lorentzian metrics of regularity $$C^1$$ C 1 , the most general regularity class currently available in the context of the classical singularity theorems. Along the way, we also prove that any maximizing causal curve in a $$C^1$$ C 1 -spacetime is a geodesic and hence of $$C^2$$ C 2 -regularity.


2021 ◽  
Vol 2021 (9) ◽  
Author(s):  
Alex May

Abstract We prove a theorem showing that the existence of “private” curves in the bulk of AdS implies two regions of the dual CFT share strong correlations. A private curve is a causal curve which avoids the entanglement wedge of a specified boundary region $$ \mathcal{U} $$ U . The implied correlation is measured by the conditional mutual information $$ I\left({\mathcal{V}}_1:\left.{\mathcal{V}}_2\right|\mathcal{U}\right) $$ I V 1 : V 2 U , which is O(1/GN) when a private causal curve exists. The regions $$ {\mathcal{V}}_1 $$ V 1 and $$ {\mathcal{V}}_2 $$ V 2 are specified by the endpoints of the causal curve and the placement of the region $$ \mathcal{U} $$ U . This gives a causal perspective on the conditional mutual information in AdS/CFT, analogous to the causal perspective on the mutual information given by earlier work on the connected wedge theorem. We give an information theoretic argument for our theorem, along with a bulk geometric proof. In the geometric perspective, the theorem follows from the maximin formula and entanglement wedge nesting. In the information theoretic approach, the theorem follows from resource requirements for sending private messages over a public quantum channel.


1989 ◽  
pp. 1-14
Author(s):  
John K. Beem
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document