graded band gap
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 12)

H-INDEX

25
(FIVE YEARS 2)

Author(s):  
Fatima Rasheed J. ◽  
V. Suresh Babu

Objective: The work investigates the performance of intrinsic layers with and without band-gap tailoring in single-junction amorphous silicon-based photovoltaic cells. The work proposes single-junction amorphous silicon solar cells in which band-gap grading has been done between layers as well as within each layer for the first time. Materials & Methods: The samples of hydrogenated amorphous silicon-germanium with different mole fractions are fabricated, and their band-gaps are validated through optical characterization and material characterization. A single-junction solar cell with an intrinsic layer made up of hydrogenated amorphous silicon (aSi:H) having a band-gap of 1.6 eV is replaced by continuously graded hydrogenated amorphous silicon-germanium (aSi1-xGe x :H ) intrinsic bottom layers having band-gaps ranging from 0.9 eV to 1.5 eV. The proposed structure has been considered as a variant of previously designed single-junction band-gap tailored structures. Results: The suitable utilization of band-gap tailoring on the intrinsic absorber layer aids more incident photons in energy conversion and thereby attain a better short circuit current density of 19.89 mA/cm2. Conclusion: A comparative study on performance parameters of solar cell structures with graded band-gap intrinsic layer and the ungraded single band-gap intrinsic layer has been done. The graded band-gap intrinsic layer structure results in better conversion efficiency of 15.55%, while its ungraded counterpart contributes only 14.76 %. Further, the proposed solar structure is compared with the performance parameters of recent related works. The layers used in the proposed solar structure are of amorphous-phase only, which reduces structural complexity. The use of a lesser number of active layers reduces the number of fabrication steps and manufacturing cost compared to state-of-the-art.


2020 ◽  
Vol 10 (5) ◽  
pp. 709-718
Author(s):  
Fatima Rasheed J. ◽  
V. Suresh Babu

Objective: This work identifies materials that satisfy refractive index, optical band gap, composition profile, conductivity, hall mobility, carrier type and carrier concentration to utilize them in making thin film photovoltaic cells. Methods: We fabricated phosphorous doped amorphous silicon (n+ aSi:H), boron doped amorphous silicon germanium(p+ aSiGe:H) and intrinsic amorphous silicon (i-aSi:H). A detailed and systematic characterization of the fabricated layers was done. The phosphorous doped amorphous silicon (n+ aSi:H) showed an optical band gap of 1.842 eV and an electron mobility of 295.45 cm2V-1s-1. The boron doped amorphous silicon germanium (p+ aSiGe:H) exhibited an optical band gap of 1.74 eV and a hole mobility of 158.353 cm2V-1s-1. The intrinsic amorphous silicon (i-aSi:H) has an optical band gap of 1.801 eV. The films of n+ aSi:H, i-aSi:H and p+ aSiGe:H can be utilized for fabricating graded band gap single junction thin film solar cells, as they are semiconducting materials with varying band gaps in the range of 1.74 eV to 1.84 eV. The tailoring of band gap achieved by the proposed material combination has been presented using its energy band diagram. Results: In this work, we are proposing a single junction graded band gap solar cell with aSi:H and aSi- Ge:H alloys of varying doping to achieve grading of band gap, which improves the efficiency while keeping the cell compact and light. Conclusion: As a first step in the validation, we have simulated a thin film solar cell using SCAPS1D simulation software with the measured parameters for each of the layers and found that it successfully performs as solar cell with an efficiency of 14.5%.


Solar Energy ◽  
2019 ◽  
Vol 194 ◽  
pp. 563-568 ◽  
Author(s):  
Priyabrata Sadhukhan ◽  
Sachindranath Das

Sign in / Sign up

Export Citation Format

Share Document