community responses
Recently Published Documents


TOTAL DOCUMENTS

919
(FIVE YEARS 224)

H-INDEX

56
(FIVE YEARS 10)

Author(s):  
Trevor A. Carter ◽  
Paula J. Fornwalt ◽  
Kathleen A. Dwire ◽  
Daniel C. Laughlin

Author(s):  
Raymond Foxworth ◽  
Nicole Redvers ◽  
Marcos A. Moreno ◽  
Victor A. Lopez-Carmen ◽  
Gabriel R. Sanchez ◽  
...  

Author(s):  
Andrew R St James ◽  
Ruth E Richardson

Abstract Peatlands are responsible for over half of wetland methane emissions, yet major uncertainties remain regarding carbon flow, especially when increased availability of electron acceptors stimulate competing physiologies. We used microcosm incubations to study the effects of sulfate on microorganisms in two temperate peatlands, one bog and one fen. Three different electron donor treatments were used (13C-acetate, 13C-formate, and a mixture of 12C short-chain fatty acids) to elucidate the responses of sulfate-reducing bacteria (SRB) and methanogens to sulfate stimulation. Methane production was measured and metagenomic sequencing was performed, with only the heavy DNA fraction sequenced from treatments receiving 13C electron donors. Our data demonstrate stimulation of dissimilatory sulfate reduction in both sites, with contrasting community responses. In McLean Bog (MB), hydrogenotrophic Deltaproteobacteria and acetotrophic Peptococcaceae lineages of SRB were stimulated, as were lineages with unclassified dissimilatory sulfite reductases. In Michigan Hollow Fen (MHF), there was little stimulation of Peptococcaceae populations, and a small stimulation of Deltaproteobacteria SRB populations only in the presence of formate as electron donor. Sulfate stimulated an increase in relative abundance of reads for both oxidative and reductive sulfite reductases, suggesting stimulation of an internal sulfur cycle. Together, these data indicate a stimulation of SRB activity in response to sulfate in both sites, with a stronger growth response in MB than MHF. This study provides valuable insights into microbial community responses to sulfate in temperate peatlands and is an important first step to understanding how SRB and methanogens compete to regulate carbon flow in these systems.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12427
Author(s):  
Fernanda M. Souza ◽  
Eliandro R. Gilbert ◽  
Kalina M. Brauko ◽  
Luciano Lorenzi ◽  
Eunice Machado ◽  
...  

We assessed how multi- and univariate models reflect marine environmental health based on macrobenthic community responses to three environmental stressor categories: hydrodynamics, organic enrichment and metal contamination. We then compared the models with the benthic index AMBI (AZTI Marine Biotic Index). Macrobenthic community and physicochemical variables were sampled at 35 sites along Babitonga Bay, a subtropical estuary in Southern Brazil. Distance-based linear modelling identified depth, grain size and organic matter as well as Cu and Zn as key stressors affecting the macrobenthos. Using canonical analysis of principal coordinates (CAP), we developed three multivariate models based on the variability in community composition, creating stress gradients. The metal gradient showed better correlation with the benthic community. Sediment quality indices (Geoaccumulation Index and Contamination Factor) showed a low to moderate contamination status, with higher concentrations for Cr, Ni and Zn at the inner areas of the bay. According to AMBI, Babitonga Bay has a “good” environmental health status, and the AMBI values show stronger correlations with the hydrodynamic and organic enrichment gradients (r = 0.50 and r = 0.47) rather than the metal gradient (r = 0.29). Lumbrineridae polychaetes (not included in the AMBI list) and Scoloplos sp. were negatively related to the metal contamination gradient and were considered sensitive, while Sigambra sp., Magelona papillicornis, the gastropod Heleobia australis and species of the crustacean order Mysida were positively related to the gradient and considered tolerant to higher concentrations of metals in the sediment. Despite the inconsistency in the ecological classification provided by AMBI and its relationship with the metal gradient, our results suggest that the environmental quality was satisfactory for the studied gradients. The metal gradient showed the weakest correlation to AMBI. In such cases, the ecological classification of taxa by the index should be evaluated under the perspective of the action of inorganic genotoxic contaminants represented by metals.


Sign in / Sign up

Export Citation Format

Share Document