stochastic fluid models
Recently Published Documents


TOTAL DOCUMENTS

40
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 53 (3) ◽  
pp. 649-686
Author(s):  
Nigel G. Bean ◽  
Małgorzata M. O’Reilly ◽  
Zbigniew Palmowski

AbstractIn this paper we analyse the limiting conditional distribution (Yaglom limit) for stochastic fluid models (SFMs), a key class of models in the theory of matrix-analytic methods. So far, only transient and stationary analyses of SFMs have been considered in the literature. The limiting conditional distribution gives useful insights into what happens when the process has been evolving for a long time, given that its busy period has not ended yet. We derive expressions for the Yaglom limit in terms of the singularity˜$s^*$ such that the key matrix of the SFM, ${\boldsymbol{\Psi}}(s)$, is finite (exists) for all $s\geq s^*$ and infinite for $s<s^*$. We show the uniqueness of the Yaglom limit and illustrate the application of the theory with simple examples.


Author(s):  
O. D. Street ◽  
D. Crisan

Spearheaded by the recent efforts to derive stochastic geophysical fluid dynamics models, we present a general framework for introducing stochasticity into variational principles through the concept of a semi-martingale driven variational principle and constraining the component variables to be compatible with the driving semi-martingale. Within this framework and the corresponding choice of constraints, the Euler–Poincaré equation can be easily deduced. We show that the deterministic theory is a special case of this class of stochastic variational principles. Moreover, this is a natural framework that enables us to correctly characterize the pressure term in incompressible stochastic fluid models. Other general constraints can also be incorporated as long as they are compatible with the driving semi-martingale.


2019 ◽  
Vol 150 (6) ◽  
pp. 2776-2814 ◽  
Author(s):  
Theodore D. Drivas ◽  
Darryl D. Holm

AbstractSmooth solutions of the incompressible Euler equations are characterized by the property that circulation around material loops is conserved. This is the Kelvin theorem. Likewise, smooth solutions of Navier–Stokes are characterized by a generalized Kelvin's theorem, introduced by Constantin–Iyer (2008). In this note, we introduce a class of stochastic fluid equations, whose smooth solutions are characterized by natural extensions of the Kelvin theorems of their deterministic counterparts, which hold along certain noisy flows. These equations are called the stochastic Euler–Poincaré and stochastic Navier–Stokes–Poincaré equations respectively. The stochastic Euler–Poincaré equations were previously derived from a stochastic variational principle by Holm (2015), which we briefly review. Solutions of these equations do not obey pathwise energy conservation/dissipation in general. In contrast, we also discuss a class of stochastic fluid models, solutions of which possess energy theorems but do not, in general, preserve circulation theorems.


2017 ◽  
Vol 33 (4) ◽  
pp. 495-523 ◽  
Author(s):  
Aviva Samuelson ◽  
Małgorzata M. O’Reilly ◽  
Nigel G. Bean

Author(s):  
Darryl D. Holm

This paper derives stochastic partial differential equations (SPDEs) for fluid dynamics from a stochastic variational principle (SVP). The paper proceeds by taking variations in the SVP to derive stochastic Stratonovich fluid equations; writing their Itô representation; and then investigating the properties of these stochastic fluid models in comparison with each other, and with the corresponding deterministic fluid models. The circulation properties of the stochastic Stratonovich fluid equations are found to closely mimic those of the deterministic ideal fluid models. As with deterministic ideal flows, motion along the stochastic Stratonovich paths also preserves the helicity of the vortex field lines in incompressible stochastic flows. However, these Stratonovich properties are not apparent in the equivalent Itô representation, because they are disguised by the quadratic covariation drift term arising in the Stratonovich to Itô transformation. This term is a geometric generalization of the quadratic covariation drift term already found for scalar densities in Stratonovich's famous 1966 paper. The paper also derives motion equations for two examples of stochastic geophysical fluid dynamics; namely, the Euler–Boussinesq and quasi-geostropic approximations.


Sign in / Sign up

Export Citation Format

Share Document