glass patterns
Recently Published Documents


TOTAL DOCUMENTS

99
(FIVE YEARS 12)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
Vol 187 ◽  
pp. 102-109
Author(s):  
Rita Donato ◽  
Andrea Pavan ◽  
Jorge Almeida ◽  
Massimo Nucci ◽  
Gianluca Campana

Author(s):  
Stephen Grossberg

Multiple paradoxical visual percepts are explained using boundary completion and surface filling-in properties, including discounting the illuminant; brightness constancy, contrast, and assimilation; the Craik-O’Brien-Cornsweet Effect; and Glass patterns. Boundaries act as both generators and barriers to filling-in using specific cooperative and competitive interactions. Oriented local contrast detectors, like cortical simple cells, create uncertainties that are resolved using networks of simple, complex, and hypercomplex cells, leading to unexpected insights such as why Roman typeface letter fonts use serifs. Further uncertainties are resolved by interactions with bipole grouping cells. These simple-complex-hypercomplex-bipole networks form a double filter and grouping network that provides unified explanations of texture segregation, hyperacuity, and illusory contour strength. Discounting the illuminant suppresses illumination contaminants so that feature contours can hierarchically induce surface filling-in. These three hierarchical resolutions of uncertainty explain neon color spreading. Why groupings do not penetrate occluding objects is explained, as are percepts of DaVinci stereopsis, the Koffka-Benussi and Kanizsa-Minguzzi rings, and pictures of graffiti artists and Mooney faces. The property of analog coherence is achieved by laminar neocortical circuits. Variations of a shared canonical laminar circuit have explained data about vision, speech, and cognition. The FACADE theory of 3D vision and figure-ground separation explains much more data than a Bayesian model can. The same cortical process that assures consistency of boundary and surface percepts, despite their complementary laws, also explains how figure-ground separation is triggered. It is also explained how cortical areas V2 and V4 regulate seeing and recognition without forcing all occluders to look transparent.


i-Perception ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 204166952110179
Author(s):  
Andrea Pavan ◽  
Adriano Contillo ◽  
Filippo Ghin ◽  
Rita Donato ◽  
Matthew J. Foxwell ◽  
...  

Glass patterns (GPs) have been widely employed to investigate the mechanisms underlying processing of global form from locally oriented cues. The current study aimed to psychophysically investigate the level at which global orientation is extracted from translational GPs using the tilt after-effect (TAE) and manipulating the spatiotemporal properties of the adapting pattern. We adapted participants to translational GPs and tested with sinewave gratings. In Experiment 1, we investigated whether orientation-selective units are sensitive to the temporal frequency of the adapting GP. We used static and dynamic translational GPs, with dynamic GPs refreshed at different temporal frequencies. In Experiment 2, we investigated the spatial frequency selectivity of orientation-selective units by manipulating the spatial frequency content of the adapting GPs. The results showed that the TAE peaked at a temporal frequency of ∼30 Hz, suggesting that orientation-selective units responding to translational GPs are sensitive to high temporal frequencies. In addition, TAE from translational GPs peaked at lower spatial frequencies than the dipoles’ spatial constant. These effects are consistent with form-motion integration at low and intermediate levels of visual processing.


Sign in / Sign up

Export Citation Format

Share Document