scholarly journals Spatial and Temporal Selectivity of Translational Glass Patterns Assessed With the Tilt After-Effect

i-Perception ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 204166952110179
Author(s):  
Andrea Pavan ◽  
Adriano Contillo ◽  
Filippo Ghin ◽  
Rita Donato ◽  
Matthew J. Foxwell ◽  
...  

Glass patterns (GPs) have been widely employed to investigate the mechanisms underlying processing of global form from locally oriented cues. The current study aimed to psychophysically investigate the level at which global orientation is extracted from translational GPs using the tilt after-effect (TAE) and manipulating the spatiotemporal properties of the adapting pattern. We adapted participants to translational GPs and tested with sinewave gratings. In Experiment 1, we investigated whether orientation-selective units are sensitive to the temporal frequency of the adapting GP. We used static and dynamic translational GPs, with dynamic GPs refreshed at different temporal frequencies. In Experiment 2, we investigated the spatial frequency selectivity of orientation-selective units by manipulating the spatial frequency content of the adapting GPs. The results showed that the TAE peaked at a temporal frequency of ∼30 Hz, suggesting that orientation-selective units responding to translational GPs are sensitive to high temporal frequencies. In addition, TAE from translational GPs peaked at lower spatial frequencies than the dipoles’ spatial constant. These effects are consistent with form-motion integration at low and intermediate levels of visual processing.

2018 ◽  
Vol 115 (44) ◽  
pp. 11304-11309 ◽  
Author(s):  
Luciano Dyballa ◽  
Mahmood S. Hoseini ◽  
Maria C. Dadarlat ◽  
Steven W. Zucker ◽  
Michael P. Stryker

Assessments of the mouse visual system based on spatial-frequency analysis imply that its visual capacity is low, with few neurons responding to spatial frequencies greater than 0.5 cycles per degree. However, visually mediated behaviors, such as prey capture, suggest that the mouse visual system is more precise. We introduce a stimulus class—visual flow patterns—that is more like what the mouse would encounter in the natural world than are sine-wave gratings but is more tractable for analysis than are natural images. We used 128-site silicon microelectrodes to measure the simultaneous responses of single neurons in the primary visual cortex (V1) of alert mice. While holding temporal-frequency content fixed, we explored a class of drifting patterns of black or white dots that have energy only at higher spatial frequencies. These flow stimuli evoke strong visually mediated responses well beyond those predicted by spatial-frequency analysis. Flow responses predominate in higher spatial-frequency ranges (0.15–1.6 cycles per degree), many are orientation or direction selective, and flow responses of many neurons depend strongly on sign of contrast. Many cells exhibit distributed responses across our stimulus ensemble. Together, these results challenge conventional linear approaches to visual processing and expand our understanding of the mouse’s visual capacity to behaviorally relevant ranges.


2018 ◽  
Author(s):  
Luciano Dyballa ◽  
Mahmood S. Hoseini ◽  
Maria C. Dadarlat ◽  
Steven W. Zucker ◽  
Michael P. Stryker

AbstractAssessments of the mouse visual system based on spatial frequency analysis imply that its visual capacity is low, with few neurons responding to spatial frequencies greater than 0.5 cycles/degree. However, visually-mediated behaviors, such as prey capture, suggest that the mouse visual system is more precise. We introduce a new stimulus class—visual flow patterns—that is more like what the mouse would encounter in the natural world than are sine-wave gratings but is more tractable for analysis than are natural images. We used 128-site silicon microelectrodes to measure the simultaneous responses of single neurons in the primary visual cortex (V1) of alert mice. While holding temporal-frequency content fixed, we explored a class of drifting patterns of black or white dots that have energy only at higher spatial frequencies. These flow stimuli evoke strong visually-mediated responses well beyond those predicted by spatial frequency analysis. Flow responses predominate in higher spatial-frequency ranges (0.15–1.6 cycles/degree); many are orientation- or direction-selective; and flow responses of many neurons depend strongly on sign of contrast. Many cells exhibit distributed responses across our stimulus ensemble. Together, these results challenge conventional linear approaches to visual processing and expand our understanding of the mouse’s visual capacity to behaviorally-relevant ranges.Significance StatementThe visual system of the mouse is now widely studied as a model for development and disease in humans. Studies of its primary visual cortex (V1) using conventional grating stimuli to construct linear-nonlinear receptive fields suggest that the mouse must have very poor vision. Using novel stimuli resembling the flow of images across the retina as the mouse moves through the grass, we find that most V1 neurons respond reliably to very much finer details of the visual scene than previously believed. Our findings suggest that the conventional notion of a unique receptive field does not capture the operation of the neural network in mouse V1.


Perception ◽  
1996 ◽  
Vol 25 (1_suppl) ◽  
pp. 12-12
Author(s):  
P J Bex ◽  
F A J Verstraten ◽  
I Mareschal

The motion aftereffect (MAE) was used to study the temporal-frequency and spatial-frequency selectivity of the visual system at suprathreshold contrasts. Observers adapted to drifting sine-wave gratings of a range of spatial and temporal frequencies. The magnitude of the MAE induced by the adaptation was measured with counterphasing test gratings of a variety of spatial and temporal frequencies. Independently of the spatial or temporal frequency of the adapting grating, the largest MAE was found with slowly counterphasing test gratings (∼0.125 – 0.25 Hz). For slowly counterphasing test gratings (<∼2 Hz), the largest MAEs were found when the test grating was of similar spatial frequency to that of the adapting grating, even at very low spatial frequencies (0.125 cycle deg−1). However, such narrow spatial frequency tuning was lost when the temporal frequency of the test grating was increased. The data suggest that MAEs are dominated by a single, low-pass temporal-frequency mechanism and by a series of band-pass spatial-frequency mechanisms at low temporal frequencies. At higher test temporal frequencies, the loss of spatial-frequency tuning implicates separate mechanisms with broader spatial frequency tuning.


1979 ◽  
Vol 80 (1) ◽  
pp. 191-216
Author(s):  
ROBERT B. PINTER

1. The descending contralateral movement detector (DCMD) of the locust responds vigorously to small target (ca. 5°) stimuli; this response is inhibited by simultaneous or subsequent rotation of a radial grating (windmill) pattern (subtending 19-90° of visual angle) and suppressed by earlier rotation. 2. The excitation produced in the DCMD by rotation of a radial grating pattern depends only on the spatial frequency of the stripes of the pattern, and is independent of pattern size, and of temporal frequency over the range of low values used. 3. The inhibition produced by this same stimulus similarly depends only on the spatial frequency of the stripes of the pattern, independent of pattern size, and of temporal frequency over the range of low values used. 4. As the radial grating excitation decreases with increasing spatial frequency, the inhibition increases until limited by optical and neural resolution. 5. For spatial frequencies of the radial grating pattern below 0.05 cyc/deg the radial grating patterns become excitatory. Above 0.05 cyc/deg they are inhibitory. This is the point in spatial frequency below which inhibitory grating ‘backgrounds’ become excitatory targets. 6. Inhibition decreases as the size of the radial grating pattern is decreased below 190 visual angle; at 8° or less no inhibition can be found at any spatial frequency. 7. Inhibition is greater in the posterior than anterior regions of the receptive field, and greater in the ventral than the dorsal regions. 8. Inhibition decreases as the distance between small target and the radial grating is increased, but this is influenced by the local variations of excitation and inhibition. 9. Habituation is often greater for small target and low-frequency radial grating response than for inhibited small target and high frequency grating response. 10. These results substantiate previously proposed lateral inhibition models of the acridid movement detector system.


1989 ◽  
Vol 62 (2) ◽  
pp. 544-557 ◽  
Author(s):  
C. Casanova ◽  
R. D. Freeman ◽  
J. P. Nordmann

1. We have studied response properties of single cells in the striate-recipient zone of the cat's lateral posterior-pulvinar (LP-P) complex. This zone is in the lateral section of the lateral posterior nucleus (LP1). Our purpose was to determine basic response characteristics of these cells and to investigate the possibility that the LP-P complex is a center of integration that is dominated by input from visual cortex. 2. The majority (72%) of cells in the striate-recipient zone respond to drifting sinusoidal gratings with unmodulated discharge. 3. Cells in the LP1 are selective to the orientation of gratings, and tuning functions have a mean bandwidth of 31 degrees. More than one-half of these units are direction-selective. The preferred orientation and the tuning widths for the two eyes are generally well matched. However, a few cells exhibited the interesting property of opposite preferred directions for the two eyes. Orientation tuning for a small group of cells was different for the mean discharge and first harmonic components, suggesting a convergence from different inputs to these cells. 4. Two-thirds of LP1 cells are tuned to low spatial frequencies (less than 0.5 c/deg). The tuning is broad with a mean bandwidth of 2.2 octaves. The remaining one-third of the units are low-pass because they show no attenuation of their responses to low spatial frequencies. Both eyes exhibit the same spatial frequency preference and the same spatial frequency tuning. There is a high correlation between spatial frequency and orientation selectivities. 5. All cells tested are tuned for temporal frequency with a sharp attenuation for low frequencies. The optimal values range between 4 and 8 Hz, and the mean bandwidth is 2.2 octaves. 6. Cells in LP1 are mostly binocular. When monocular, cells are almost always contralaterally driven. Dichoptic presentation of gratings reveals the presence of strong binocular interaction. In almost all cases, these interactions are phase specific. The cell's discharge is facilitated at particular phases and inhibited at phases 180 degrees away. These binocular interactions are orientation dependent. 7. Twenty-five percent of the cells with phase-specific binocular facilitation appear to be monocular when each eye is tested separately. For three cells, we observed a non-phase-specific inhibitory effect of the silent eye. 8. Our findings indicate that LP1 cells form a relatively homogeneous group, suggesting a high degree of integration of multiple cortical inputs.(ABSTRACT TRUNCATED AT 400 WORDS)


2005 ◽  
Vol 55 (3) ◽  
pp. 245-258 ◽  
Author(s):  
◽  
◽  
◽  

AbstractFlickering light can cause adverse effects in some humans, as can rhythmic spatial patterns of particular frequencies. We investigated whether birds react to the temporal frequency of standard 100 Hz fluorescent lamps and the spatial frequency of the visual surround in the manner predicted by the human literature, by examining their effects on the preferences, behaviour and plasma corticosterone of European starlings (Sturnus vulgaris). We predicted that high frequency lighting (> 30 kHz) and a relatively low spatial frequency on the walls of their cages (0.1 cycle cm−1) would be less aversive than low frequency lighting (100 Hz) and a relatively high spatial frequency (2.5 cycle cm−1). Birds had strong preferences for both temporal and spatial frequencies. These preferences did not always fit with predictions, although there was evidence that 100 Hz was more stressful than 30 kHz lighting, as birds were less active and basal corticosterone levels were higher under 100 Hz lighting. Our chosen spatial frequencies had no overall significant effect on corticosterone levels. Although there are clearly effects of, and interactions between, the frequency of the light and the visual surround on the behaviour and physiology of birds, the pattern of results is not straightforward.


Perception ◽  
1975 ◽  
Vol 4 (3) ◽  
pp. 297-304 ◽  
Author(s):  
Bruno G Breitmeyer

The threshold detectability of a briefly presented target stimulus consisting of a vertical sinusoidal grating was affected not only by the spatial frequency content of an equally briefly presented, two-octave-wide masking noise, but also by the time interval separating the onsets of the target and its mask. Over a range of stimulus onset asynchronies, in which the mask onset either preceded, coincided with, or followed the target onset, a mask with a low spatial frequency content had its greatest masking effect on a high spatial frequency target grating when the mask followed the target by 120–180 ms. When the mask had a high spatial frequency content and the target was of low spatial frequency, or when the target was entered on the mask frequency band, optimal masking effects occurred when the onsets of the mask and target coincided. The results are discussed in relation to previous masking studies, particuarly those in which U-shaped backward pattern masking functions are obtained.


2018 ◽  
Vol 119 (6) ◽  
pp. 2059-2067 ◽  
Author(s):  
Chris Scholes ◽  
Paul V. McGraw ◽  
Neil W. Roach

During periods of steady fixation, we make small-amplitude ocular movements, termed microsaccades, at a rate of 1–2 every second. Early studies provided evidence that visual sensitivity is reduced during microsaccades—akin to the well-established suppression associated with larger saccades. However, the results of more recent work suggest that microsaccades may alter retinal input in a manner that enhances visual sensitivity to some stimuli. Here we parametrically varied the spatial frequency of a stimulus during a detection task and tracked contrast sensitivity as a function of time relative to microsaccades. Our data reveal two distinct modulations of sensitivity: suppression during the eye movement itself and facilitation after the eye has stopped moving. The magnitude of suppression and facilitation of visual sensitivity is related to the spatial content of the stimulus: suppression is greatest for low spatial frequencies, while sensitivity is enhanced most for stimuli of 1–2 cycles/°, spatial frequencies at which we are already most sensitive in the absence of eye movements. We present a model in which the tuning of suppression and facilitation is explained by delayed lateral inhibition between spatial frequency channels. Our data show that eye movements actively modulate visual sensitivity even during fixation: the detectability of images at different spatial scales can be increased or decreased depending on when the image occurs relative to a microsaccade. NEW & NOTEWORTHY Given the frequency with which we make microsaccades during periods of fixation, it is vital that we understand how they affect visual processing. We demonstrate two selective modulations of contrast sensitivity that are time-locked to the occurrence of a microsaccade: suppression of low spatial frequencies during each eye movement and enhancement of higher spatial frequencies after the eye has stopped moving. These complementary changes may arise naturally because of sluggish gain control between spatial channels.


Perception ◽  
1989 ◽  
Vol 18 (5) ◽  
pp. 639-648 ◽  
Author(s):  
Victor Klymenko ◽  
Naomi Weisstein

The figure – ground organization of an ambiguous bipartite pattern in which the two regions of the pattern contained sine-wave gratings which differed in spatial frequency was examined for two pairs of spatial frequencies: 1 and 4 cycles deg−1, and 1 and 8 cycles deg−1. The region of higher spatial frequency underwent contrast reversal at one of four rates: 0, 3.75, 7.5, or 15 Hz. The region of lower spatial frequency was equated with either the temporal frequency or the velocity of the grating of higher spatial frequency in three sets of conditions: one stationary condition, three in which temporal frequency was equated, and three in which velocity was equated. For the 1 and 4 cycles deg−1 pair, the region of lower spatial frequency tended to be seen as the background a higher percentage of the time. There were significant linear trends for the appearance as background of the region of lower spatial frequency with respect to the magnitude of the velocity difference between the two regions of the pattern. The faster the 1 cycle deg−1 grating moved with respect to the 4 cycles deg−1 grating, the higher the percentage of the time it was seen as the ground. The results for the 1 and 8 cycles deg−1 pair were in some cases unexpected in that the 8 cycles deg−1 grating was seen as the ground behind the 1 cycle deg−1 grating even though it was of a higher spatial frequency and moved at a slower velocity. The spatiotemporal tuning of the visual system is discussed.


Sign in / Sign up

Export Citation Format

Share Document