fluence map
Recently Published Documents


TOTAL DOCUMENTS

58
(FIVE YEARS 11)

H-INDEX

10
(FIVE YEARS 1)

Author(s):  
Wentao Wang ◽  
Yang Sheng ◽  
Manisha Palta ◽  
Brian Czito ◽  
Christopher Willett ◽  
...  

Abstract Objective: To design a deep transfer learning framework for modeling fluence map predictions for stereotactic body radiation therapy (SBRT) of adrenal cancer and similar sites that usually have a small number of cases. Approach: We developed a transfer learning framework for adrenal SBRT planning that leverages knowledge in a pancreas SBRT planning model. Treatment plans from the two sites had different dose prescriptions and beam settings but both prioritized gastrointestinal sparing. A base framework was first trained with 100 pancreas cases. This framework consists of two convolutional neural networks (CNN), which predict individual beam doses (BD-CNN) and fluence maps (FM-CNN) sequentially for 9-beam intensity-modulated radiation therapy (IMRT) plans. Forty-five adrenal plans were split into training/validation/test sets with the ratio of 20/10/15. The base BD-CNN was re-trained with transfer learning using 5/10/15/20 adrenal training cases to produce multiple candidate adrenal BD-CNN models. The base FM-CNN was directly used for adrenal cases. The deep learning (DL) plans were evaluated by several clinically relevant dosimetric endpoints, producing a percentage score relative to the clinical plans. Main results: Transfer learning significantly reduced the number of training cases and training time needed to train such a DL framework. The adrenal transfer learning model trained with 5/10/15/20 cases achieved validation plan scores of 85.4/91.2/90.7/89.4, suggesting that model performance saturated with 10 training cases. Meanwhile, a model using all 20 adrenal training cases without transfer learning only scored 80.5. For the final test set, the 5/10/15/20-case models achieved scores of 73.5/75.3/78.9/83.3. Significance: It is feasible to use deep transfer learning to train an IMRT fluence prediction framework. This technique could adapt to different dose prescriptions and beam configurations. This framework potentially enables DL modeling for clinical sites that have a limited dataset, either due to few cases or due to rapid technology evolution.


Author(s):  
Stefan C M ten Eikelder ◽  
Ali Ajdari ◽  
Thomas Bortfeld ◽  
Dick den Hertog

2020 ◽  
Vol 65 (23) ◽  
pp. 235035
Author(s):  
Lin Ma ◽  
Mingli Chen ◽  
Xuejun Gu ◽  
Weiguo Lu

Author(s):  
Yihua Lan ◽  
Fang Li ◽  
Zijun Li ◽  
Binglei Yue ◽  
Yin Zhang

Abstract The model and algorithm of intensity-modulated radiotherapy (IMRT) are updated increasingly quickly, but the hardware upgrade of primary hospitals often lags behind. The new generation of intelligent precise radiotherapy platforms provides users with intelligent medical consortium services using big data, artificial intelligence and industrial Internet of Things technology. This technology can ensure that under the real-time guidance of a professional medical consortium, primary hospitals can realize rapid large-scale reverse planning design and can more accurately consider many factors of postprocessing. Although large-scale healthcare systems, such as volumetric-modulated arc therapy and other accurate radiotherapy technologies, have developed rapidly, the development of step-and-shoot-mode IMRT technology is still very important for developing countries. For software, in addition to the conformity of the dose distribution, the modulation speed, convenience and stability of the later dose delivery should also be considered in inverse planning. Therefore, this paper analyzes the main problems in conventional IMRT inverse planning, including the smoothing of the fluence map, the selection of the gantry angle and the dose leakage of tongue–groove effects. To address these issues, a novel Intelligent IoT-based large-scale inverse planning strategy with the key factors of the postmodulation is developed, and a detailed flow chart is also provided. The scheme consists of two steps. The first step is to obtain a relatively optimal combination of gantry angles by considering the dose distribution requirements and constraints and the modulation requirements and constraints. The second step is to optimize the intensity map, to smooth the map based on prior knowledge according to the determined angles, and to obtain the final modulation scheme according to the relevant objectives and constraints of the map decomposition (leaf sequencing). In an experiment, we calculate and validate the clinical head and neck case. Because of the special gantry angle selection, the angle combination is optimized from the initial equivalent distribution to adapt to the target area and protect the nontarget area. The value of the objective function varies greatly after the optimization, especially in the target area, and the target value decreases by approximately 10%. On this basis, we smooth the fluence map by a partial differential equation with prior knowledge and a minimization of the total number of monitor units. It is also shown from the objective function value that the target value is essentially unchanged for the target area, while for the nontarget area, the value decreases by 16%, which is very impressive.


Sign in / Sign up

Export Citation Format

Share Document