learning models
Recently Published Documents


TOTAL DOCUMENTS

8342
(FIVE YEARS 6585)

H-INDEX

61
(FIVE YEARS 26)

2022 ◽  
Vol 238 ◽  
pp. 111934
Author(s):  
Xu Han ◽  
Ming Jia ◽  
Yachao Chang ◽  
Yaopeng Li

Author(s):  
Subhra Swetanisha ◽  
Amiya Ranjan Panda ◽  
Dayal Kumar Behera

<p>An ensemble model has been proposed in this work by combining the extreme gradient boosting classification (XGBoost) model with support vector machine (SVM) for land use and land cover classification (LULCC). We have used the multispectral Landsat-8 operational land imager sensor (OLI) data with six spectral bands in the electromagnetic spectrum (EM). The area of study is the administrative boundary of the twin cities of Odisha. Data collected in 2020 is classified into seven land use classes/labels: river, canal, pond, forest, urban, agricultural land, and sand. Comparative assessments of the results of ten machine learning models are accomplished by computing the overall accuracy, kappa coefficient, producer accuracy and user accuracy. An ensemble classifier model makes the classification more precise than the other state-of-the-art machine learning classifiers.</p>


2022 ◽  
Vol 8 ◽  
pp. 612-618
Author(s):  
Pavel Matrenin ◽  
Murodbek Safaraliev ◽  
Stepan Dmitriev ◽  
Sergey Kokin ◽  
Anvari Ghulomzoda ◽  
...  

2022 ◽  
Vol 16 (4) ◽  
pp. 1-22
Author(s):  
Mu Yuan ◽  
Lan Zhang ◽  
Xiang-Yang Li ◽  
Lin-Zhuo Yang ◽  
Hui Xiong

Labeling data (e.g., labeling the people, objects, actions, and scene in images) comprehensively and efficiently is a widely needed but challenging task. Numerous models were proposed to label various data and many approaches were designed to enhance the ability of deep learning models or accelerate them. Unfortunately, a single machine-learning model is not powerful enough to extract various semantic information from data. Given certain applications, such as image retrieval platforms and photo album management apps, it is often required to execute a collection of models to obtain sufficient labels. With limited computing resources and stringent delay, given a data stream and a collection of applicable resource-hungry deep-learning models, we design a novel approach to adaptively schedule a subset of these models to execute on each data item, aiming to maximize the value of the model output (e.g., the number of high-confidence labels). Achieving this lofty goal is nontrivial since a model’s output on any data item is content-dependent and unknown until we execute it. To tackle this, we propose an Adaptive Model Scheduling framework, consisting of (1) a deep reinforcement learning-based approach to predict the value of unexecuted models by mining semantic relationship among diverse models, and (2) two heuristic algorithms to adaptively schedule the model execution order under a deadline or deadline-memory constraints, respectively. The proposed framework does not require any prior knowledge of the data, which works as a powerful complement to existing model optimization technologies. We conduct extensive evaluations on five diverse image datasets and 30 popular image labeling models to demonstrate the effectiveness of our design: our design could save around 53% execution time without loss of any valuable labels.


CATENA ◽  
2022 ◽  
Vol 211 ◽  
pp. 105957
Author(s):  
Seoro Lee ◽  
Joo Hyun Bae ◽  
Jiyeong Hong ◽  
Dongseok Yang ◽  
Panos Panagos ◽  
...  

2022 ◽  
Vol 16 (4) ◽  
pp. 1-55
Author(s):  
Manish Gupta ◽  
Puneet Agrawal

In recent years, the fields of natural language processing (NLP) and information retrieval (IR) have made tremendous progress thanks to deep learning models like Recurrent Neural Networks (RNNs), Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTMs) networks, and Transformer [ 121 ] based models like Bidirectional Encoder Representations from Transformers (BERT) [ 24 ], Generative Pre-training Transformer (GPT-2) [ 95 ], Multi-task Deep Neural Network (MT-DNN) [ 74 ], Extra-Long Network (XLNet) [ 135 ], Text-to-text transfer transformer (T5) [ 96 ], T-NLG [ 99 ], and GShard [ 64 ]. But these models are humongous in size. On the other hand, real-world applications demand small model size, low response times, and low computational power wattage. In this survey, we discuss six different types of methods (Pruning, Quantization, Knowledge Distillation (KD), Parameter Sharing, Tensor Decomposition, and Sub-quadratic Transformer-based methods) for compression of such models to enable their deployment in real industry NLP projects. Given the critical need of building applications with efficient and small models, and the large amount of recently published work in this area, we believe that this survey organizes the plethora of work done by the “deep learning for NLP” community in the past few years and presents it as a coherent story.


2022 ◽  
Vol 54 (9) ◽  
pp. 1-36
Author(s):  
Dylan Chou ◽  
Meng Jiang

Data-driven network intrusion detection (NID) has a tendency towards minority attack classes compared to normal traffic. Many datasets are collected in simulated environments rather than real-world networks. These challenges undermine the performance of intrusion detection machine learning models by fitting machine learning models to unrepresentative “sandbox” datasets. This survey presents a taxonomy with eight main challenges and explores common datasets from 1999 to 2020. Trends are analyzed on the challenges in the past decade and future directions are proposed on expanding NID into cloud-based environments, devising scalable models for large network data, and creating labeled datasets collected in real-world networks.


Sign in / Sign up

Export Citation Format

Share Document