nodulisporic acids
Recently Published Documents


TOTAL DOCUMENTS

14
(FIVE YEARS 3)

H-INDEX

8
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Kyle Cornelius Van de Bittner

<p>Nature holds some of the greatest secrets in drug design and development and the ability to access these trade secrets has been revolutionised by modern bioengineering technologies. In order to exploit these technologies it is essential to understand what genes are involved in compound production and the enzymatic steps that limit flux to the desired product. This thesis describes the discovery of four secondary-metabolic enzymatic steps involved in the biosynthesis of a group of valuable natural products known as nodulisporic acids. Nodulisporic acids are known for their potent insecticidal activities; however, biosynthesis of these compounds by the natural fungal producer, Hypoxylon pulicicidum (Nodulisporium sp.), is exceptionally difficult and has prevented the commercial development of novel nodulisporic acid-containing veterinary medicines and crop protects. To discover how nodulisporic acids are biosynthesized: 1. the H. pulicicidum genome was sequenced 2. a gene cluster responsible for nodulisporic acid production was predicted 3. genes in the cluster were functionally characterised by pathway reconstitution in a common, fast growing mould, Penicillium paxilli In turn, four genes involved in the biosynthesis of the nodulisporic acid core compound, nodulisporic acid F, have been functionally characterised. The four genes encode a geranylgeranyl transferase (NodC), a flavin adenine dinucleotide-dependent oxygenase (NodM), an indole diterpene cyclase (NodB) and a cytochrome P450 oxygenase (NodW). Two of the gene products (NodM and NodW) catalyse two previously unreported reactions that provide the enzymatic basis of the biosynthetic branch point unique to nodulisporic acid biosynthesis. From here, future efforts will explore how these genes can be engineered to overcome flux bottlenecks and enable production of significantly increased, and even industrially relevant, product titres.</p>


2021 ◽  
Author(s):  
◽  
Kyle Cornelius Van de Bittner

<p>Nature holds some of the greatest secrets in drug design and development and the ability to access these trade secrets has been revolutionised by modern bioengineering technologies. In order to exploit these technologies it is essential to understand what genes are involved in compound production and the enzymatic steps that limit flux to the desired product. This thesis describes the discovery of four secondary-metabolic enzymatic steps involved in the biosynthesis of a group of valuable natural products known as nodulisporic acids. Nodulisporic acids are known for their potent insecticidal activities; however, biosynthesis of these compounds by the natural fungal producer, Hypoxylon pulicicidum (Nodulisporium sp.), is exceptionally difficult and has prevented the commercial development of novel nodulisporic acid-containing veterinary medicines and crop protects. To discover how nodulisporic acids are biosynthesized: 1. the H. pulicicidum genome was sequenced 2. a gene cluster responsible for nodulisporic acid production was predicted 3. genes in the cluster were functionally characterised by pathway reconstitution in a common, fast growing mould, Penicillium paxilli In turn, four genes involved in the biosynthesis of the nodulisporic acid core compound, nodulisporic acid F, have been functionally characterised. The four genes encode a geranylgeranyl transferase (NodC), a flavin adenine dinucleotide-dependent oxygenase (NodM), an indole diterpene cyclase (NodB) and a cytochrome P450 oxygenase (NodW). Two of the gene products (NodM and NodW) catalyse two previously unreported reactions that provide the enzymatic basis of the biosynthetic branch point unique to nodulisporic acid biosynthesis. From here, future efforts will explore how these genes can be engineered to overcome flux bottlenecks and enable production of significantly increased, and even industrially relevant, product titres.</p>


2018 ◽  
Vol 140 (30) ◽  
pp. 9502-9511 ◽  
Author(s):  
Yike Zou ◽  
Xiangqin Li ◽  
Yun Yang ◽  
Simon Berritt ◽  
Jason Melvin ◽  
...  

ChemInform ◽  
2007 ◽  
Vol 38 (48) ◽  
Author(s):  
Amos B. III Smith ◽  
Akin H. Davulcu ◽  
Young Shin Cho ◽  
Kazuyuki Ohmoto ◽  
Laszlo Kuerti ◽  
...  

ChemInform ◽  
2007 ◽  
Vol 38 (43) ◽  
Author(s):  
Amos B. III Smith ◽  
Laszlo Kuerti ◽  
Akin H. Davulcu ◽  
Young Shin Cho ◽  
Kazuyuki Ohmoto

2007 ◽  
Vol 72 (13) ◽  
pp. 4611-4620 ◽  
Author(s):  
Amos B. Smith ◽  
László Kürti ◽  
Akin H. Davulcu ◽  
Young Shin Cho ◽  
Kazuyuki Ohmoto

2007 ◽  
Vol 72 (13) ◽  
pp. 4596-4610 ◽  
Author(s):  
Amos B. Smith ◽  
Akin H. Davulcu ◽  
Young Shin Cho ◽  
Kazuyuki Ohmoto ◽  
László Kürti ◽  
...  

2007 ◽  
Vol 11 (1) ◽  
pp. 19-24 ◽  
Author(s):  
Amos B. Smith ◽  
László Kürti ◽  
Akin H. Davulcu ◽  
Young Shin Cho

2006 ◽  
Vol 8 (10) ◽  
pp. 2167-2170 ◽  
Author(s):  
Amos B. Smith ◽  
László Kürti ◽  
Akin H. Davulcu

Sign in / Sign up

Export Citation Format

Share Document