scalable search
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 7)

H-INDEX

11
(FIVE YEARS 0)

Author(s):  
José Antonio Hernández López ◽  
Jesús Sánchez Cuadrado

AbstractSearch engines extract data from relevant sources and make them available to users via queries. A search engine typically crawls the web to gather data, analyses and indexes it and provides some query mechanism to obtain ranked results. There exist search engines for websites, images, code, etc., but the specific properties required to build a search engine for models have not been explored much. In the previous work, we presented MAR, a search engine for models which has been designed to support a query-by-example mechanism with fast response times and improved precision over simple text search engines. The goal of MAR is to assist developers in the task of finding relevant models. In this paper, we report new developments of MAR which are aimed at making it a useful and stable resource for the community. We present the crawling and analysis architecture with which we have processed about 600,000 models. The indexing process is now incremental and a new index for keyword-based search has been added. We have also added a web user interface intended to facilitate writing queries and exploring the results. Finally, we have evaluated the indexing times, the response time and search precision using different configurations. MAR has currently indexed over 500,000 valid models of different kinds, including Ecore meta-models, BPMN diagrams, UML models and Petri nets. MAR is available at http://mar-search.org.


2020 ◽  
Vol 143 (3) ◽  
Author(s):  
Yu-Chin Chan ◽  
Faez Ahmed ◽  
Liwei Wang ◽  
Wei Chen

Abstract Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations and immense, often intractable, geometrical design spaces. Using a precomputed dataset of unit cells, a multiscale structure can be quickly filled via combinatorial search algorithms, and machine learning models can be trained to accelerate the process. However, the dependence on data induces a unique challenge: an imbalanced dataset containing more of certain shapes or physical properties can be detrimental to the efficacy of data-driven approaches. In answer, we posit that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning. To select such subsets, we propose METASET, a methodology that (1) uses similarity metrics and positive semi-definite kernels to jointly measure the closeness of unit cells in both shape and property spaces and (2) incorporates Determinantal Point Processes for efficient subset selection. Moreover, METASET allows the trade-off between shape and property diversity so that subsets can be tuned for various applications. Through the design of 2D metamaterials with target displacement profiles, we demonstrate that smaller, diverse subsets can indeed improve the search process as well as structural performance. By eliminating inherent overlaps in a dataset of 3D unit cells created with symmetry rules, we also illustrate that our flexible method can distill unique subsets regardless of the metric employed. Our diverse subsets are provided publicly for use by any designer.


Author(s):  
Yu-Chin Chan ◽  
Faez Ahmed ◽  
Liwei Wang ◽  
Wei Chen

Abstract Data-driven design of mechanical metamaterials is an increasingly popular method to combat costly physical simulations and immense, often intractable, geometrical design spaces. Using a precomputed dataset of unit cells, a multiscale structure can be quickly filled via combinatorial search algorithms, and machine learning models can be trained to accelerate the process. However, the dependence on data induces a unique challenge: An imbalanced dataset containing more of certain shapes or physical properties than others can be detrimental to the efficacy of the approaches and any models built on those sets. In answer, we posit that a smaller yet diverse set of unit cells leads to scalable search and unbiased learning. To select such subsets, we propose METASET, a methodology that 1) uses similarity metrics and positive semi-definite kernels to jointly measure the closeness of unit cells in both shape and property space, and 2) incorporates Determinantal Point Processes for efficient subset selection. Moreover, METASET allows the trade-off between shape and property diversity so that subsets can be tuned for various applications. Through the design of 2D metamaterials with target displacement profiles, we demonstrate that smaller, diverse subsets can indeed improve the search process as well as structural performance. We also apply METASET to eliminate inherent overlaps in a dataset of 3D unit cells created with symmetry rules, distilling it down to the most unique families. Our diverse subsets are provided publicly for use by any designer.


Author(s):  
Azzam Alsudais ◽  
Mohammad Hashemi ◽  
Zhe Huang ◽  
Bharath Balasubramanian ◽  
Shankaranarayanan Puzhavakath Narayanan ◽  
...  
Keyword(s):  

2018 ◽  
Vol 46 (W1) ◽  
pp. W141-W147 ◽  
Author(s):  
Divyanshu Srivastava ◽  
Arvind Iyer ◽  
Vibhor Kumar ◽  
Debarka Sengupta

2015 ◽  
Vol 1 (11) ◽  
pp. e1501057 ◽  
Author(s):  
Clara E. Yoon ◽  
Ossian O’Reilly ◽  
Karianne J. Bergen ◽  
Gregory C. Beroza

Seismology is experiencing rapid growth in the quantity of data, which has outpaced the development of processing algorithms. Earthquake detection—identification of seismic events in continuous data—is a fundamental operation for observational seismology. We developed an efficient method to detect earthquakes using waveform similarity that overcomes the disadvantages of existing detection methods. Our method, called Fingerprint And Similarity Thresholding (FAST), can analyze a week of continuous seismic waveform data in less than 2 hours, or 140 times faster than autocorrelation. FAST adapts a data mining algorithm, originally designed to identify similar audio clips within large databases; it first creates compact “fingerprints” of waveforms by extracting key discriminative features, then groups similar fingerprints together within a database to facilitate fast, scalable search for similar fingerprint pairs, and finally generates a list of earthquake detections. FAST detected most (21 of 24) cataloged earthquakes and 68 uncataloged earthquakes in 1 week of continuous data from a station located near the Calaveras Fault in central California, achieving detection performance comparable to that of autocorrelation, with some additional false detections. FAST is expected to realize its full potential when applied to extremely long duration data sets over a distributed network of seismic stations. The widespread application of FAST has the potential to aid in the discovery of unexpected seismic signals, improve seismic monitoring, and promote a greater understanding of a variety of earthquake processes.


Sign in / Sign up

Export Citation Format

Share Document