itemset mining
Recently Published Documents


TOTAL DOCUMENTS

669
(FIVE YEARS 173)

H-INDEX

30
(FIVE YEARS 7)

2022 ◽  
Vol 54 (9) ◽  
pp. 1-35
Author(s):  
Lázaro Bustio-Martínez ◽  
René Cumplido ◽  
Martín Letras ◽  
Raudel Hernández-León ◽  
Claudia Feregrino-Uribe ◽  
...  

In data mining, Frequent Itemsets Mining is a technique used in several domains with notable results. However, the large volume of data in modern datasets increases the processing time of Frequent Itemset Mining algorithms, making them unsuitable for many real-world applications. Accordingly, proposing new methods for Frequent Itemset Mining to obtain frequent itemsets in a realistic amount of time is still an open problem. A successful alternative is to employ hardware acceleration using Graphics Processing Units (GPU) and Field Programmable Gates Arrays (FPGA). In this article, a comprehensive review of the state of the art of Frequent Itemsets Mining hardware acceleration is presented. Several approaches (FPGA and GPU based) were contrasted to show their weaknesses and strengths. This survey gathers the most relevant and the latest research efforts for improving the performance of Frequent Itemsets Mining regarding algorithms advances and modern development platforms. Furthermore, this survey organizes the current research on Frequent Itemsets Mining from the hardware perspective considering the source of the data, the development platform, and the baseline algorithm.


IEEE Access ◽  
2022 ◽  
pp. 1-1
Author(s):  
Kazuma Fujioka ◽  
Kimiaki Shirahama

2021 ◽  
Author(s):  
Vu Van Vinh ◽  
Lam Thi Hoa Mi ◽  
Duong Thi Mong Thuy

Author(s):  
Majid Seyfi ◽  
Richi Nayak ◽  
Yue Xu ◽  
Shlomo Geva

We tackle the problem of discriminative itemset mining. Given a set of datasets, we want to find the itemsets that are frequent in the target dataset and have much higher frequencies compared with the same itemsets in other datasets. Such itemsets are very useful for dataset discrimination. We demonstrate that this problem has important applications and, at a same time, is very challenging. We present the DISSparse algorithm, a mining method that uses two determinative heuristics based on the sparsity characteristics of the discriminative itemsets as a small subset of the frequent itemsets. We prove that the DISSparse algorithm is sound and complete. We experimentally investigate the performance of the proposed DISSparse on a range of datasets, evaluating its efficiency and stability and demonstrating it is substantially faster than the baseline method.


2021 ◽  
Author(s):  
Acquah Hackman ◽  
Yu Huang ◽  
Philippe Fournier-Viger ◽  
Vincent Tseng
Keyword(s):  

2021 ◽  
Author(s):  
Krishan Kumar Sethi ◽  
Dharavath Ramesh ◽  
Munesh Chandra Trivedi
Keyword(s):  

2021 ◽  
Author(s):  
Martha ◽  
Ramdas Vankdothu ◽  
Hameed Mohd Abdul ◽  
Rekha Gangula

Abstract The revolution in technology for storing and processing big data leads to data intensive computing as a new paradigm. To find the valuable and precise big data knowledge, efficient and scalable data mining techniques are required. In data mining, different techniques are applied depending on the kind of knowledge to be mined. Association rules are generated from the frequent itemsets computed by frequent itemset mining (FIM) algorithms. The problem of designing scalable and efficient frequent itemset mining algorithms on the Spark RDD framework. The research done in this thesis aims to improve the performance (in terms of execution time) of the existing Spark-based frequent itemset mining algorithms and efficiently re-design other frequent itemset mining algorithms on Spark. The particular problem of interest is re-designing the Eclat algorithm in the distributed computing environment of the Spark. The paper proposes and implements a parallel Eclat algorithm using the Spark RDD architecture, dubbed RDD-Eclat. EclatV1 is the earliest version, followed by EclatV2, EclatV3, EclatV4, and EclatV5. Each version is the consequence of a different technique and heuristic being applied to the preceding variant. Following EclatV1, the filtered transaction technique is used, followed by heuristics for equivalence class partitioning in EclatV4 and EclatV5. EclatV2 and EclatV3 are slightly different algorithmically, as are EclatV4 and EclatV5. Experiments on synthetic and real-world datasets.


Sign in / Sign up

Export Citation Format

Share Document