fuzzy optimal solution
Recently Published Documents





Ganesan Kandasamy ◽  
T. Loganathan

In this study, we present a novel method for solving fully fuzzy multi-objective linear fractional programming problems without transforming to equivalent crisp problems. First, we calculate the fuzzy optimal value for each fractional objective function and then we convert the fully fuzzy multi-objective linear fractional programming problem to a single objective fuzzy linear fractional programming problem and find its fuzzy optimal solution which inturn yields a fuzzy Pareto optimal solution for the given fully fuzzy multi-objective linear fractional programming problem. To demonstrate the proposed strategy, a numerical example is provided.

Filomat ◽  
2020 ◽  
Vol 34 (15) ◽  
pp. 5073-5084
Sapan Das ◽  
S.A. Edalatpanah ◽  
T. Mandal

Several methods currently exist for solving fuzzy linear fractional programming problems under non negative fuzzy variables. However, due to the limitation of these methods, they cannot be applied for solving fully fuzzy linear fractional programming (FFLFP) problems where all the variables and parameters are fuzzy numbers. So, this paper is planning to fill in this gap and in order to obtain the fuzzy optimal solution we propose a new efficient method for FFLFP problems utilized in daily life circumstances. This proposed method is based on crisp linear fractional programming and has a simple structure. To show the efficiency of our proposed method some numerical and real life problems have been illustrated.

P. Senthil Kumar

In this article, the author categorises the solid transportation problem (STP) under uncertain environments. He formulates the mixed and fully intuitionistic fuzzy solid transportation problems (FIFSTPs) and utilizes the triangular intuitionistic fuzzy number (TIFN) to deal with uncertainty and hesitation. The PSK (P. Senthil Kumar) method for finding an intuitionistic fuzzy optimal solution for fully intuitionistic fuzzy transportation problem (FIFTP) is extended to solve the mixed and type-4 IFSTP and the optimal objective value of mixed and type-4 IFSTP is obtained in terms of triangular intuitionistic fuzzy number (TIFN). The main advantage of this method is that the optimal solution of mixed and type-4 IFSTP is obtained without using the basic feasible solution and the method of testing optimality. Moreover, the proposed method is computationally very simple and easy to understand. Finally, the procedure for the proposed method is illustrated with the help of numerical examples which is followed by graphical representation of the finding.

Gourav Gupta

There are several methods in the literature to find the fuzzy optimal solution of fully fuzzy linear programming (FFLP) problems. However, in all these methods, it is assumed that the product of two trapezoidal (triangular) fuzzy numbers will also be a trapezoidal (triangular) fuzzy number. Fan et al. (“Generalized fuzzy linear programming for decision making under uncertainty: Feasibility of fuzzy solutions and solving approach”, Information Sciences, Vol. 241, pp. 12–27, 2013) proposed a method for finding the fuzzy optimal solution of FFLP problems without considering this assumption. In this paper, it is shown that the method proposed by Fan et al. (2013) suffer from errors and to overcome these errors, a new method (named as Mehar method) is proposed for solving FFLP problems by modifying the method proposed by Fan et al. (2013) . To illustrate the proposed method, some numerical problems are solved.

Sign in / Sign up

Export Citation Format

Share Document